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Taylor Series

If we are clever, we can use Taylor series to evaluate the sfiocestain

series:
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Taylor Series Example
D

fle)=In(l4+2x),a=e—1

e Expand around a different point: may be necessary if thealnd-
dius ofcovergence is small.

e Can'tfind a pattern in the derivatives? Simply use the fingtterms
as an approximation.
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Error estimates
D
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Taylor’s Inequality: If | f("*+1)(2)| < M for |z — a| < d then

R, (x) is called theremainder of the Taylor series and

f(x) =T, (z) + Ry(x)

whereT), (z) is then'” degree Taylor polynomial of.
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Error Estimates
D

e Estimate|sin(z) — T5(x)|.

e How many terms of the Taylor series aboudre required to calcu-

late the value ofin(1) to within an error of 355 ?
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AST Error Estimate

Alternating Series Test Estimate: Let > .~ (—1)"a, be an
alternating series that convergesi/toThen,

|Sn1'_-LWf§ Am+1

e How many terms of the Taylor series aboufor arctan( ) are re-
guired to calculate the value afto within an error of
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