Math 8, Winter 2005

Math 8, Winter 2005

Scott Pauls

Dartmouth College, Department of Mathematics

2/9/05

With Acroread, CTRL-L switch between full screen and window mode

Math 8, Winter 2005

Version 1.0 – 2/9/05 Scott Pauls

If we are clever, we can use Taylor series to evaluate the sums of certain series:

 $\sum_{n=0}^{\infty} \frac{1}{2^n n!}$ $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{(2n+1)!}$

Taylor Series Example

$$f(x) = \ln(1+x), a = e - 1$$

- Expand around a different point: may be necessary if the initial radius ofcovergence is small.
- Can't find a pattern in the derivatives? Simply use the first few terms as an approximation.

Error estimates

Taylor's Inequality: If $|f^{(n+1)}(x)| \le M$ for $|x-a| \le d$ then $|R_n(x)| \le \frac{M}{(n+1)!}|x-a|^{n+1}$ where $R_n(x) = \sum_{i=n+1}^{\infty} \frac{f^{(i)}(a)}{i!}(x-a)^i$

 $R_n(x)$ is called the *remainder* of the Taylor series and

$$f(x) = T_n(x) + R_n(x)$$

where $T_n(x)$ is the n^{th} degree Taylor polynomial of f.

- Estimate $|\sin(x) T_3(x)|$.
- How many terms of the Taylor series about 0 are required to calculate the value of sin(1) to within an error of $\frac{1}{10000}$?

Alternating Series Test Estimate: Let $\sum_{i=0}^{\infty} (-1)^n a_n$ be an alternating series that converges to L. Then, $|s_m - L| \le a_{m+1}$

• How many terms of the Taylor series about 0 for $\arctan(x)$ are required to calculate the value of π to within an error of $\frac{1}{10000}$?

