Math 8, Winter 2005

Math 8, Winter 2005

Scott Pauls

Dartmouth College, Department of Mathematics

1/31/05

With Acroread, CTRL-L switch between full screen and window mode

Math 8, Winter 2005

Version 1.0 – 1/31/05 Scott Pauls

Alernating Series

So far, we've (mostly) dealt with series that have only positive terms. What happens if there arre some negative terms. One common type of series with positive and negative terms are *alternating series*:

$$\sum_{n=k}^{\infty} (-1)^n a_n$$

1

where $\{a_n\}$ is a sequence of postive terms.

Alternating Series Test

Example:

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

AST Examples

 $\sum_{n=1}^{\infty} (-1)^n \frac{2n+4}{4n+1}$

$$\sum_{n=3}^{\infty} (-1)^n \frac{n}{2^n}$$

Absolute Convergence

When a series has both positive and negative terms, we say that a series

$$\sum_{n=k}^{\infty} a_n$$

converges absolutely if

 $\sum_{n=k}^{\infty} |a_n|$

converges. If the series converges but does not converge absolutely, we say that it *converges conditionally*.

1. AST \implies the series converges.

- 2. $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges by the integral test.
- 3. Conclusion: The series converges absolutely.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

- 1. AST \implies the series converges.
- 2. $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges by the integral test.
- 3. Conclusion: The series converges conditionally.

Scott Pauls

Ratio test

Consider a series, $\sum_{n=k}^{\infty} a_n$. Then, if 1. $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$ then the series $\sum_{n=k}^{\infty} a_n$ converges absolutely. 2. $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$ or $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$ then the series $\sum_{n=k}^{\infty} a_n$ diverges.

$$\sum_{n=1}^{\infty} \frac{3^n}{n!}$$

$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

