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Alernating Series
D

So far, we've (mostly) dealt with series that have only pesiterms.
What happens if there arre some negative terms. One comrperoty
series with positive and negative terms alternating series:

Z(_l)nan

n=%k

where{a,, } is a sequence of postive terms.
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Alternating Series Test

If the alternating series

Z(_l)nan

n==k
satisfies
1. apy11 > a, foralln
2.

lim a,, =0
n—ao

Then the series converges.

Example:
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AST Examples
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Absolute Convergence

When a series has both positive and negative terms, we Say seaies

o

>

n=k

converges absolutely if

00
D lan
n==k

converges. If the series converges but does not convergéusddy, we
say that itconverges conditionally.
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00 1)
Z(nz)

n=1

. AST — the series converges.
2. 5 L converges by the integral test.

n=1 n2

3. Conclusion: The series converges absolutely.

00 1)
Z(n)

n=1

1. AST — the series converges.
2. 5> L diverges by the integral test.

n=1 mn

3. Conclusion: The series converges conditionally.



1/31/05
Version 1.0
Scott Pauls

Ratio test

Consider a serie$, .., a,. Then, if

1.
. a
lim |/ = <1
n—o00 an
then the serie§_ ", a,, converges absolutely.
2.
. a
lim = =1 >1
n—oo an
or
lim |2rtl] —
n—oo an

then the serie§ "~ , a, diverges.
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Examples




