Math 8, Winter 2005

Scott Pauls

Dartmouth College, Department of Mathematics
1/28/05

Integral test estimates

- For most convergent series, we can not exactly compute the sum of the series.
- We can use the partial sums, s_{m} as estimates to the sum of the series.
- But,how good are these estimates? Using the integral test we can estimate the error:

Suppose $f(k)=a_{k}$, where f is a continuous, positive, decreasing function for $x \geq n$ and $\sum_{i=n}^{\infty} a_{i}$ is convergent. If

$$
R_{m}=\sum_{i=n}^{\infty} a_{i}-\sum_{i=n}^{m} a_{i}
$$

then

$$
\int_{n+1}^{\infty} f(x) d x \leq R_{n} \leq \int_{n}^{\infty} f(x) d x
$$

This also gives a succint estimate on the sum of the series:
Suppose $f(k)=a_{k}$, where f is a continuous, positive, decreasing function for $x \geq n$ and $\sum_{i=n}^{\infty} a_{i}$ is convergent. Then

$$
s_{n}+\int_{n+1}^{\infty} f(x) d x \leq \sum_{i=n}^{\infty} a_{i} \leq s_{n}+\int_{n}^{\infty} f(x) d x
$$

Comparison Test

Suppose $\sum_{n} a_{n}$ and $\sum_{n} b_{n}$ are series with positive terms.

1. If $\sum b_{n}$ converges and $a_{n} \leq b_{n}$ for all n then $\sum a_{n}$ converges.
2. If $\sum b_{n}$ diverges and $a_{n} \geq b_{n}$ for all n then $\sum a_{n}$ diverges.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{n^{2}+1} \\
& \sum_{n=2}^{\infty} \frac{n}{n^{2}-n} \\
& \sum_{n=1}^{\infty} \frac{5}{2^{n}+3} \\
& \sum_{n=1}^{\infty} \frac{1+\sin (n)}{10^{n}}
\end{aligned}
$$

Limit Comparison test

Suppose $\sum_{n} a_{n}$ and $\sum_{n} b_{n}$ are series with positive terms. If

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L \neq 0
$$

then both series converge or both series diverge.

Example:

$$
\sum_{n=1}^{\infty} \frac{2 n^{2}+3 n}{\sqrt{5+n^{5}}}
$$

