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Administrivia 2

• Instructor: Scott Pauls

• Course webapge: http://www.math.dartmouth.edu/ m8w05

• Office: 404 Bradley Hall

• Phone: 646-1047, email: scott.pauls@dartmouth.edu

• Office hours: Wednesday 3-4:30pm, Friday 9-11am
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Administrivia 3

• This is section 2, MWF 1:45-2:50

• Classroom: Moore B03

• xhour: Thursday 1-1:50pm

• Text: Stewart’sCalculus, fifth edition.
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Course Structure 4

• Four components of your grade:

– Midterm (2 hour): 20 percent

– Two quizzes (50 minutes each): 20 percent (together)

– Final exam: 40 percent

– Homework: 20 percent

• Each quiz will be at a natural break in the material.

• Final exam is cumulative but may emphasize later material.

• Homework is assigned and due via webwork.

• We’ll have homework sets assigned every class and due once a week.

• Webwork demonstration tomorrow in xhour, 1-1:50pm.
1/5/05
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Important Dates 5

• Jan. 4 - first day of class

• Jan. 17 - MLK day, no class

• Jan. 18 - NRO, add/drop deadline

• Jan. 20 - xhour makeup for MLK day

• Jan. 27 -Quiz 1 during xhour

• Feb. 10 -Midterm exam, 6-8pm

• Feb. 14 - Withdraw deadline (without W)

• Feb. 23 - Final chance to withdraw (with W)

• Feb. 24 -Quiz 2 during xhour

• March 9 - Last day of class

• March 12 -Final exam, 3-6pm1/5/05
Version 1.0
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Expectations 6

• Assigned reading should be completed before class.

• Having trouble with the material?

– Come to office hours (W 3-4:30, F 9-11) (or make an appointment)

– Go to tutorials: Sun, Tues, Thurs evenings 7-9pm. Lcoation TBA.

– Other options: tutors, study groups, etc.

• Don’t fall behind!
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Let’s begin... 7

INTEGRATION:
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Let’s begin... 7

INTEGRATION:

• Integration allows us to solve the geometric prob-

lem of finding the area under a given curve.

• We use Riemann sums to approximate the area:

n
∑

i=1

f(xi)∆x
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INTEGRATION:

• Integration allows us to solve the geometric prob-

lem of finding the area under a given curve.

• We use Riemann sums to approximate the area:

n
∑

i=1

f(xi)∆x

• In this case, we use a midpoint approximation

with n = 10, a = 0, b = 2.
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INTEGRATION:

• Integration allows us to solve the geometric prob-

lem of finding the area under a given curve.

• We use Riemann sums to approximate the area:

n
∑

i=1

f(xi)∆x

• In this case, we use a midpoint approximation

with n = 10, a = 0, b = 2.

• Refining the partition, (in this method, increasing
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Let’s begin... 7

INTEGRATION:

• Integration allows us to solve the geometric prob-

lem of finding the area under a given curve.

• We use Riemann sums to approximate the area:

n
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f(xi)∆x

• In this case, we use a midpoint approximation

with n = 10, a = 0, b = 2.
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INTEGRATION:

• Integration allows us to solve the geometric prob-

lem of finding the area under a given curve.

• We use Riemann sums to approximate the area:

n
∑

i=1

f(xi)∆x

• In this case, we use a midpoint approximation

with n = 10, a = 0, b = 2.
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Limiting process 8
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Limiting process 8

• To calculuate the area, we would take the limit asn tends to∞. In other words:

lim
n→∞

n
∑

i=1

f(xi)∆x
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Limiting process 8

• To calculuate the area, we would take the limit asn tends to∞. In other words:

lim
n→∞

n
∑

i=1

f(xi)∆x

• This is the definition of the intgeral:
∫

b

a

f(x) dx = lim
n→∞

n
∑

i=1

f(xi)∆x
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Limiting process 8

• To calculuate the area, we would take the limit asn tends to∞. In other words:

lim
n→∞

n
∑

i=1

f(xi)∆x

• This is the definition of the intgeral:
∫

b

a

f(x) dx = lim
n→∞

n
∑

i=1

f(xi)∆x

• Experimentally, we see that the area approximations settleonto a value, the area
under the curve.
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Limiting process 8

• To calculuate the area, we would take the limit asn tends to∞. In other words:

lim
n→∞

n
∑

i=1

f(xi)∆x

• This is the definition of the intgeral:
∫

b

a

f(x) dx = lim
n→∞

n
∑

i=1

f(xi)∆x

• Experimentally, we see that the area approximations settleonto a value, the area
under the curve.

• Several potential problems:

– A sum with infinitely many terms (we will return to this later in the course)

– ∆x → 0

– What does this mean?
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Fundamental Theorem 9
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Fundamental Theorem 9

• Luckily, these issues can be resolved and we find the fundamental theorem of

calculus: IfF is an antiderivative off then
∫ b

a

f(x) dx = F (b) − F (a)
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Fundamental Theorem 9

• Luckily, these issues can be resolved and we find the fundamental theorem of

calculus: IfF is an antiderivative off then
∫ b

a

f(x) dx = F (b) − F (a)

• Thus, to calculate integrals easily, we’d like to find anti-derivatives of any function

(yet another topic we will return to this term).
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More applications of integration 10

AREA BETWEEN TWO CURVES:
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More applications of integration 10

AREA BETWEEN TWO CURVES:

•
∫ b

a
f(x) dx really measures the area between the

curve and the x-axis
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More applications of integration 10

AREA BETWEEN TWO CURVES:

•
∫ b

a
f(x) dx really measures the area between the

curve and the x-axis

• Change the x-axis to another curve,y = g(x)

wheref(x) ≥ g(x) for x ∈ [a, b]
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More applications of integration 10

AREA BETWEEN TWO CURVES:

•
∫ b

a
f(x) dx really measures the area between the

curve and the x-axis

• Change the x-axis to another curve,y = g(x)

wheref(x) ≥ g(x) for x ∈ [a, b]

• All that changes in our Riemann sum is that the

height of the box is now given byf(xi) − g(xi).
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More applications of integration 10

AREA BETWEEN TWO CURVES:

•
∫ b

a
f(x) dx really measures the area between the

curve and the x-axis

• Change the x-axis to another curve,y = g(x)

wheref(x) ≥ g(x) for x ∈ [a, b]

• All that changes in our Riemann sum is that the

height of the box is now given byf(xi) − g(xi).

• In other words, an approximation of the area be-

tweenf andg is

n
∑

i=1

(f(xi) − g(xi))∆x
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Area between two curves 11

Again, as refinement yields better and better approximations, we have that the exact

area between the curve is given by
∫

b

a

(f(x) − g(x)) dx

EXAMPLES:
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Area between two curves 11

Again, as refinement yields better and better approximations, we have that the exact

area between the curve is given by
∫

b

a

(f(x) − g(x)) dx

EXAMPLES:

• f(x) = −x2 + x + 3, g(x) = x
2

3
+ x − 3, a = 0, b = 2
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Area between two curves 11

Again, as refinement yields better and better approximations, we have that the exact

area between the curve is given by
∫

b

a

(f(x) − g(x)) dx

EXAMPLES:

• f(x) = −x2 + x + 3, g(x) = x
2

3
+ x − 3, a = 0, b = 2

• Find the area of the region bounded byf(x) = x2 andg(x) = 2x − x2.
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Area between two curves 11

Again, as refinement yields better and better approximations, we have that the exact

area between the curve is given by
∫

b

a

(f(x) − g(x)) dx

EXAMPLES:

• f(x) = −x2 + x + 3, g(x) = x
2

3
+ x − 3, a = 0, b = 2

• Find the area of the region bounded byf(x) = x2 andg(x) = 2x − x2.

• Find the area of the region bounded bysin(x) andcos(x) for x ∈ [0, π

2
].
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Area between two curves 11

Again, as refinement yields better and better approximations, we have that the exact

area between the curve is given by
∫

b

a

(f(x) − g(x)) dx

EXAMPLES:

• f(x) = −x2 + x + 3, g(x) = x
2

3
+ x − 3, a = 0, b = 2

• Find the area of the region bounded byf(x) = x2 andg(x) = 2x − x2.

• Find the area of the region bounded bysin(x) andcos(x) for x ∈ [0, π

2
].

• Theorem: The area between the curvesy = f(x) andy = g(x) for x ∈ [a, b] is

A =

∫ b

a

|f(x) − g(x)| dx
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Area between two curves 11

Again, as refinement yields better and better approximations, we have that the exact

area between the curve is given by
∫

b

a

(f(x) − g(x)) dx

EXAMPLES:

• f(x) = −x2 + x + 3, g(x) = x
2

3
+ x − 3, a = 0, b = 2

• Find the area of the region bounded byf(x) = x2 andg(x) = 2x − x2.

• Find the area of the region bounded bysin(x) andcos(x) for x ∈ [0, π

2
].

• Theorem: The area between the curvesy = f(x) andy = g(x) for x ∈ [a, b] is

A =

∫ b

a

|f(x) − g(x)| dx

• Find the area of the region bounded byx = y2, y = x + 5, y = 2 andy = −1.
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Examples 12

• Consider the area between the curvey = 2x− x2

and the x-axis. A line through the origin cuts this

region into two pieces. Find the line that cuts the

region into two pieces of equal area.
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Examples 12

• Consider the area between the curvey = 2x− x2

and the x-axis. A line through the origin cuts this

region into two pieces. Find the line that cuts the

region into two pieces of equal area.

• General line:y = mx + b. Line through origin:

y = mx.
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Examples 12

• Consider the area between the curvey = 2x− x2

and the x-axis. A line through the origin cuts this

region into two pieces. Find the line that cuts the

region into two pieces of equal area.

• General line:y = mx + b. Line through origin:

y = mx.

• Two regionR1 andR2 have areasA1 andA2.
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Examples 12

• Consider the area between the curvey = 2x− x2

and the x-axis. A line through the origin cuts this

region into two pieces. Find the line that cuts the

region into two pieces of equal area.

• General line:y = mx + b. Line through origin:

y = mx.

• Two regionR1 andR2 have areasA1 andA2.

• To find A1 and A2, we must find the points of

intersection.
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Example (cont) 13

Set the two equations equal to one another:
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Example (cont) 13

Set the two equations equal to one another:

2x − x2 = mx

(2 − m)x − x2 = 0

x((2 − m) − x) = 0
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Example (cont) 13

Set the two equations equal to one another:

2x − x2 = mx

(2 − m)x − x2 = 0

x((2 − m) − x) = 0

• The points occur atx = 0 andx = 2 − m.
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Example (cont) 13

Set the two equations equal to one another:

2x − x2 = mx

(2 − m)x − x2 = 0

x((2 − m) − x) = 0

• The points occur atx = 0 andx = 2 − m.

• ForR1, we havef(x) = 2x−x2, g(x) = mx and

x ∈ [0, 2 − m].
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Example (cont) 14

To computeA1, the area ofR1:
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Example (cont) 14

To computeA1, the area ofR1:
∫

2−m

0

(2x − x2) − mx dx =

∫

2−m

0

(2 − m)x − x2 dx

=

(

(2 − m)

2
x2 −

x3

3

)
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∣

∣
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(2 − m)3
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Example (cont) 14

To computeA1, the area ofR1:
∫

2−m

0

(2x − x2) − mx dx =

∫

2−m

0

(2 − m)x − x2 dx

=

(
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3

)
∣
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So,

A1 =
(2 − m)3
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Example (cont) 15

Next, we computeA2:
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Example (cont) 15

Next, we computeA2:

• R2 is a little more complicated - it has two parts.
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Example (cont) 15

Next, we computeA2:

• R2 is a little more complicated - it has two parts.

• Compute triagular portion first: it is just the area

under the line forx ∈ [0, 2 − m]. The area is
1
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(2 − m)2m
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Example (cont) 15

Next, we computeA2:

• R2 is a little more complicated - it has two parts.

• Compute triagular portion first: it is just the area

under the line forx ∈ [0, 2 − m]. The area is
1

2
(2 − m)2m

• Now the right hand portion: it is just the area un-

der the curvey = 2x−x2 for x ∈ [2−m, 2]. The

area is4

3
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Example (cont) 15

Next, we computeA2:

• R2 is a little more complicated - it has two parts.

• Compute triagular portion first: it is just the area

under the line forx ∈ [0, 2 − m]. The area is
1

2
(2 − m)2m

• Now the right hand portion: it is just the area un-

der the curvey = 2x−x2 for x ∈ [2−m, 2]. The

area is4

3
− (2 − m)2 + 1

3
(2 − m)3

•

A2 = −
(2 − m)3
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Example (cont) 16

Putting this together we have that

A1 =
(2 − m)3

6

A2 = −
(2 − m)3

6

For the two to be equal we must have that2 − m = 0 or m = 2.
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