Math 8, winter 2005

Math 8, winter 2005

Scott Pauls

Dartmouth College, Department of Mathematics

1/5/05

With Acroread, CTRL-L switch between full screen and window mode

Math 8, winter 2005

Version 1.0 - 1/5/05 Scott Pauls

Administrivia

- Instructor: Scott Pauls
- Course webapge: http://www.math.dartmouth.edu/ m8w05
- Office: 404 Bradley Hall
- Phone: 646-1047, email: scott.pauls@dartmouth.edu
- Office hours: Wednesday 3-4:30pm, Friday 9-11am

Administrivia

3

- This is section 2, MWF 1:45-2:50
- Classroom: Moore B03
- xhour: Thursday 1-1:50pm
- Text: Stewart's *Calculus*, fifth edition.

Course Structure

4

- Four components of your grade:
 - Midterm (2 hour): 20 percent
 - Two quizzes (50 minutes each): 20 percent (together)
 - Final exam: 40 percent
 - Homework: 20 percent
- Each quiz will be at a natural break in the material.
- Final exam is cumulative but may emphasize later material.

• Webwork demonstration tomorrow in xhour, 1-1:50pm.

- Homework is assigned and due via webwork.
- We'll have homework sets assigned every class and due once a week.
- 1/5/05

1/5/05 Version 1.0 Scott Pauls

Important Dates

- Jan. 4 first day of class
- Jan. 17 MLK day, no class
- Jan. 18 NRO, add/drop deadline
- Jan. 20 xhour makeup for MLK day
- Jan. 27 Quiz 1 during xhour
- Feb. 10 Midterm exam, 6-8pm
- Feb. 14 Withdraw deadline (without W)
- Feb. 23 Final chance to withdraw (with W)
- Feb. 24 Quiz 2 during xhour
- March 9 Last day of class

Expectations

- Assigned reading should be completed before class.
- Having trouble with the material?
 - Come to office hours (W 3-4:30, F 9-11) (or make an appointment)
 - Go to tutorials: Sun, Tues, Thurs evenings 7-9pm. Lcoation TBA.
 - Other options: tutors, study groups, etc.
- Don't fall behind!

7

INTEGRATION:

INTEGRATION:

- Integration allows us to solve the geometric problem of finding the area under a given curve.
- We use Riemann sums to approximate the area:

$$\sum_{i=1}^{n} f(x_i) \Delta x$$

INTEGRATION:

- Integration allows us to solve the geometric problem of finding the area under a given curve.
- We use Riemann sums to approximate the area:

$$\sum_{i=1}^{n} f(x_i) \Delta x$$

Midpoint approximation

• In this case, we use a midpoint approximation with n = 10, a = 0, b = 2.

INTEGRATION:

- Integration allows us to solve the geometric problem of finding the area under a given curve.
- We use Riemann sums to approximate the area:

$$\sum_{i=1}^{n} f(x_i) \Delta x$$

Midpoint approximation

- In this case, we use a midpoint approximation with n = 10, a = 0, b = 2.
- Refining the partition, (in this method, increasing *n*), creates a better approximation.

7

INTEGRATION:

- Integration allows us to solve the geometric problem of finding the area under a given curve.
- We use Riemann sums to approximate the area:

$$\sum_{i=1}^{n} f(x_i) \Delta x$$

Midpoint approximation

• In this case, we use a midpoint approximation with n = 10, a = 0, b = 2.

• Refining the partition, (in this method, increasing *n*), creates a better approximation.

INTEGRATION:

- Integration allows us to solve the geometric problem of finding the area under a given curve.
- We use Riemann sums to approximate the area:

$$\sum_{i=1}^{n} f(x_i) \Delta x$$

Midpoint approximation

- In this case, we use a midpoint approximation with n = 10, a = 0, b = 2.
- 1762
- Refining the partition, (in this method, increasing *n*), creates a better approximation.

INTEGRATION:

- Integration allows us to solve the geometric problem of finding the area under a given curve.
- We use Riemann sums to approximate the area:

$$\sum_{i=1}^{n} f(x_i) \Delta x$$

• In this case, we use a midpoint approximation with n = 10, a = 0, b = 2.

• Refining the partition, (in this method, increasing *n*), creates a better approximation.

• To calculuate the area, we would take the limit as n tends to ∞ . In other words:

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$

• To calculuate the area, we would take the limit as n tends to ∞ . In other words:

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$

• This is the definition of the intgeral:

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$

• To calculuate the area, we would take the limit as n tends to ∞ . In other words:

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$

• This is the definition of the intgeral:

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$

• Experimentally, we see that the area approximations settle onto a value, the area under the curve.

• To calculuate the area, we would take the limit as n tends to ∞ . In other words:

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$

• This is the definition of the intgeral:

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$

- Experimentally, we see that the area approximations settle onto a value, the area under the curve.
- Several potential problems:
 - A sum with infinitely many terms (we will return to this later in the course)
 - $-\Delta x \rightarrow 0$
 - What does this mean?

Scott Pauls

193 T

Fundamental Theorem

9

• Luckily, these issues can be resolved and we find the fundamental theorem of calculus: If *F* is an antiderivative of *f* then

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a)$$

• Luckily, these issues can be resolved and we find the fundamental theorem of calculus: If *F* is an antiderivative of *f* then

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a)$$

• Thus, to calculate integrals easily, we'd like to find anti-derivatives of any function (yet another topic we will return to this term).

AREA BETWEEN TWO CURVES:

AREA BETWEEN TWO CURVES:

• $\int_{a}^{b} f(x) dx$ really measures the area between the curve and the x-axis

10

AREA BETWEEN TWO CURVES:

- $\int_{a}^{b} f(x) dx$ really measures the area between the curve and the x-axis
- Change the x-axis to another curve, y = g(x)where $f(x) \ge g(x)$ for $x \in [a, b]$

Х

AREA BETWEEN TWO CURVES:

- $\int_{a}^{b} f(x) dx$ really measures the area between the curve and the x-axis
- Change the x-axis to another curve, y = g(x)where $f(x) \ge g(x)$ for $x \in [a, b]$

• All that changes in our Riemann sum is that the height of the box is now given by $f(x_i) - g(x_i)$.

AREA BETWEEN TWO CURVES:

- $\int_{a}^{b} f(x) dx$ really measures the area between the curve and the x-axis
- Change the x-axis to another curve, y = g(x)where $f(x) \ge g(x)$ for $x \in [a, b]$
- All that changes in our Riemann sum is that the height of the box is now given by $f(x_i) g(x_i)$.
- In other words, an approximation of the area between f and g is

$$\sum_{i=1}^{n} (f(x_i) - g(x_i))\Delta x$$

Again, as refinement yields better and better approximations, we have that the exact area between the curve is given by

$$\int_{a}^{b} (f(x) - g(x)) \, dx$$

EXAMPLES:

Again, as refinement yields better and better approximations, we have that the exact area between the curve is given by

$$\int_{a}^{b} (f(x) - g(x)) \, dx$$

EXAMPLES:

•
$$f(x) = -x^2 + x + 3, g(x) = \frac{x^2}{3} + x - 3, a = 0, b = 2$$

Again, as refinement yields better and better approximations, we have that the exact area between the curve is given by

$$\int_{a}^{b} (f(x) - g(x)) \, dx$$

EXAMPLES:

- $f(x) = -x^2 + x + 3, g(x) = \frac{x^2}{3} + x 3, a = 0, b = 2$
- Find the area of the region bounded by $f(x) = x^2$ and $g(x) = 2x x^2$.

Again, as refinement yields better and better approximations, we have that the exact area between the curve is given by

$$\int_{a}^{b} (f(x) - g(x)) \, dx$$

EXAMPLES:

- $f(x) = -x^2 + x + 3, g(x) = \frac{x^2}{3} + x 3, a = 0, b = 2$
- Find the area of the region bounded by $f(x) = x^2$ and $g(x) = 2x x^2$.
- Find the area of the region bounded by $\sin(x)$ and $\cos(x)$ for $x \in [0, \frac{\pi}{2}]$.

Again, as refinement yields better and better approximations, we have that the exact area between the curve is given by

$$\int_{a}^{b} (f(x) - g(x)) \, dx$$

EXAMPLES:

- $f(x) = -x^2 + x + 3, g(x) = \frac{x^2}{3} + x 3, a = 0, b = 2$
- Find the area of the region bounded by $f(x) = x^2$ and $g(x) = 2x x^2$.
- Find the area of the region bounded by $\sin(x)$ and $\cos(x)$ for $x \in [0, \frac{\pi}{2}]$.
- **Theorem:** The area between the curves y = f(x) and y = g(x) for $x \in [a, b]$ is

$$A = \int_{a}^{b} |f(x) - g(x)| \, dx$$

Again, as refinement yields better and better approximations, we have that the exact area between the curve is given by

$$\int_{a}^{b} (f(x) - g(x)) \, dx$$

EXAMPLES:

- $f(x) = -x^2 + x + 3, g(x) = \frac{x^2}{3} + x 3, a = 0, b = 2$
- Find the area of the region bounded by $f(x) = x^2$ and $g(x) = 2x x^2$.
- Find the area of the region bounded by $\sin(x)$ and $\cos(x)$ for $x \in [0, \frac{\pi}{2}]$.
- Theorem: The area between the curves y = f(x) and y = g(x) for $x \in [a, b]$ is

$$A = \int_{a}^{b} |f(x) - g(x)| \, dx$$

Version 1.0 Scott Pauls • Find the area of the region bounded by $x = y^2$, y = x + 5, y = 2 and y = -1.

• Consider the area between the curve $y = 2x - x^2$ and the x-axis. A line through the origin cuts this region into two pieces. Find the line that cuts the region into two pieces of equal area.

Examples

• Consider the area between the curve $y = 2x - x^2_{y^{0.5}}$ and the x-axis. A line through the origin cuts this region into two pieces. Find the line that cuts the region into two pieces of equal area.

• General line: y = mx + b. Line through origin: y = mx.

Examples

0.5

1

х

1.5

2

- Consider the area between the curve $y = 2x x^2_{y^{0.5}}$ and the x-axis. A line through the origin cuts this region into two pieces. Find the line that cuts the region into two pieces of equal area.
- General line: y = mx + b. Line through origin: y = mx.
- Two region R_1 and R_2 have areas A_1 and A_2 .

Examples

0.5

1.5

2

- Consider the area between the curve $y = 2x x^2$, and the x-axis. A line through the origin cuts this region into two pieces. Find the line that cuts the region into two pieces of equal area.
- General line: y = mx + b. Line through origin: y = mx.
- Two region R_1 and R_2 have areas A_1 and A_2 .
- To find A_1 and A_2 , we must find the points of intersection.

Version 1.0 Scott Pauls

Set the two equations equal to one another:

Set the two equations equal to one another:

$$2x - x^2 = mx$$
$$(2 - m)x - x^2 = 0$$
$$x((2 - m) - x) = 0$$

Set the two equations equal to one another:

$$2x - x^{2} = mx$$
$$(2 - m)x - x^{2} = 0$$
$$x((2 - m) - x) = 0$$

• The points occur at x = 0 and x = 2 - m.

Set the two equations equal to one another:

$$2x - x^2 = mx$$
$$(2 - m)x - x^2 = 0$$
$$x((2 - m) - x) = 0$$

- The points occur at x = 0 and x = 2 m.
- For R_1 , we have $f(x) = 2x x^2$, g(x) = mx and $x \in [0, 2 m]$.

To compute A_1 , the area of R_1 :

To compute A_1 , the area of R_1 :

To compute A_1 , the area of R_1 :

Version 1.0 Scott Pauls

1/5/05

(15

Next, we compute A_2 :

Next, we compute A_2 :

• R_2 is a little more complicated - it has two parts.

Next, we compute A_2 :

- R_2 is a little more complicated it has two parts.
- Compute triagular portion first: it is just the area under the line for $x \in [0, 2 m]$. The area is $\frac{1}{2}(2-m)^2m$

-1-

Next, we compute A_2 :

- R_2 is a little more complicated it has two parts.
- Compute triagular portion first: it is just the area under the line for $x \in [0, 2 m]$. The area is $\frac{1}{2}(2-m)^2m$

Now the right hand portion: it is just the area under the curve y = 2x - x² for x ∈ [2 - m, 2]. The area is ⁴/₃ - (2 - m)² + ¹/₃(2 - m)³

Next, we compute A_2 :

- R_2 is a little more complicated it has two parts.
- Compute triagular portion first: it is just the area under the line for $x \in [0, 2 m]$. The area is $\frac{1}{2}(2-m)^2m$

Now the right hand portion: it is just the area under the curve y = 2x - x² for x ∈ [2 - m, 2]. The area is ⁴/₃ - (2 - m)² + ¹/₃(2 - m)³

$$A_2 = -\frac{(2-m)^3}{6}$$

Putting this together we have that

$$A_1 = \frac{(2-m)^3}{6}$$
$$A_2 = -\frac{(2-m)^3}{6}$$

For the two to be equal we must have that 2 - m = 0 or m = 2.

