Math 8, winter 2005

Scott Pauls
 Dartmouth College, Department of Mathematics 1/5/05

Administrivia

- Instructor: Scott Pauls
- Course webapge: http://www.math.dartmouth.edu/ m8w05
- Office: 404 Bradley Hall
- Phone: 646-1047, email: scott.pauls @ dartmouth.edu
- Office hours: Wednesday 3-4:30pm, Friday 9-11am

Administrivia

- This is section 2, MWF 1:45-2:50
- Classroom: Moore B03
- xhour: Thursday 1-1:50pm
- Text: Stewart's Calculus, fifth edition.

Course Structure

- Four components of your grade:
- Midterm (2 hour): 20 percent
- Two quizzes (50 minutes each): 20 percent (together)
- Final exam: 40 percent
- Homework: 20 percent
- Each quiz will be at a natural break in the material.
- Final exam is cumulative but may emphasize later material.
- Homework is assigned and due via webwork.
- We'll have homework sets assigned every class and due once a week.
- Webwork demonstration tomorrow in xhour, 1-1:50pm.

Important Dates

- Jan. 4 - first day of class
- Jan. 17 - MLK day, no class
- Jan. 18 - NRO, add/drop deadline
- Jan. 20 - xhour makeup for MLK day
- Jan. 27 - Quiz 1 during xhour
- Feb. 10 - Midterm exam, 6-8pm
- Feb. 14 - Withdraw deadline (without W)
- Feb. 23 - Final chance to withdraw (with W)
- Feb. 24 - Quiz 2 during xhour
- March 9 - Last day of class
- March 12 - Final exam, 3-6pm

Expectations

- Assigned reading should be completed before class.
- Having trouble with the material?
- Come to office hours (W 3-4:30, F 9-11) (or make an appointment)
- Go to tutorials: Sun, Tues, Thurs evenings 7-9pm. Lcoation TBA.
- Other options: tutors, study groups, etc.
- Don't fall behind!

Let's begin...

INTEGRATION:

Let's begin...

INTEGRATION:

- Integration allows us to solve the geometric problem of finding the area under a given curve.
- We use Riemann sums to approximate the area:

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

Let's begin...

INTEGRATION:

- Integration allows us to solve the geometric problem of finding the area under a given curve.
- We use Riemann sums to approximate the area:

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

Area: 5.340000000
$=x^{f(x)}$

- In this case, we use a midpoint approximation with $n=10, a=0, b=2$.

Let's begin...

INTEGRATION:

- Integration allows us to solve the geometric problem of finding the area under a given curve.
- We use Riemann sums to approximate the area:

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

Area: 5.340000000
$x^{f(x)}$

- In this case, we use a midpoint approximation with $n=10, a=0, b=2$.

- Refining the partition, (in this method, increasing n), creates a better approximation.

Let's begin...

INTEGRATION:

- Integration allows us to solve the geometric problem of finding the area under a given curve.
- We use Riemann sums to approximate the area:

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

- In this case, we use a midpoint approximation with $n=10, a=0, b=2$.

- Refining the partition, (in this method, increasing n), creates a better approximation.

Let's begin...

INTEGRATION:

- Integration allows us to solve the geometric problem of finding the area under a given curve.
- We use Riemann sums to approximate the area:

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

- In this case, we use a midpoint approximation with $n=10, a=0, b=2$.

- Refining the partition, (in this method, increasing n), creates a better approximation.

Let's begin...

INTEGRATION:

- Integration allows us to solve the geometric problem of finding the area under a given curve.
- We use Riemann sums to approximate the area:

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

Midpointapproximation

- In this case, we use a midpoint approximation with $n=10, a=0, b=2$.

- Refining the partition, (in this method, increasing n), creates a better approximation.

Limiting process

Version 1.0
Scott Pauls

Limiting process

- To calculuate the area, we would take the limit as n tends to ∞. In other words:

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

Limiting process

- To calculuate the area, we would take the limit as n tends to ∞. In other words:

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

- This is the definition of the intgeral:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

Limiting process

- To calculuate the area, we would take the limit as n tends to ∞. In other words:

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

- This is the definition of the intgeral:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

- Experimentally, we see that the area approximations settle onto a value, the area under the curve.

Limiting process

- To calculuate the area, we would take the limit as n tends to ∞. In other words:

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

- This is the definition of the intgeral:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

- Experimentally, we see that the area approximations settle onto a value, the area under the curve.
- Several potential problems:
- A sum with infinitely many terms (we will return to this later in the course)
- $\Delta x \rightarrow 0$
- What does this mean?

Version 1.0
Scott Pauls

Fundamental Theorem

- Luckily, these issues can be resolved and we find the fundamental theorem of calculus: If F is an antiderivative of f then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Fundamental Theorem

- Luckily, these issues can be resolved and we find the fundamental theorem of calculus: If F is an antiderivative of f then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

- Thus, to calculate integrals easily, we'd like to find anti-derivatives of any function (yet another topic we will return to this term).

AREA BETWEEN TWO CURVES:

More applications of integration

AREA BETWEEN TWO CURVES:

- $\int_{a}^{b} f(x) d x$ really measures the area between the curve and the x -axis

More applications of integration

AREA BETWEEN TWO CURVES:

- $\int_{a}^{b} f(x) d x$ really measures the area between the curve and the x -axis
- Change the x -axis to another curve, $y=g(x)$ where $f(x) \geq g(x)$ for $x \in[a, b]$

x

More applications of integration

AREA BETWEEN TWO CURVES:

- $\int_{a}^{b} f(x) d x$ really measures the area between the curve and the x -axis
- Change the x-axis to another curve, $y=g(x)$ where $f(x) \geq g(x)$ for $x \in[a, b]$
- All that changes in our Riemann sum is that the

य. $\begin{gathered}f(x) \\ f(x) \\ x^{2}\end{gathered}$ height of the box is now given by $f\left(x_{i}\right)-g\left(x_{i}\right)$.

More applications of integration

AREA BETWEEN TWO CURVES:

- $\int_{a}^{b} f(x) d x$ really measures the area between the curve and the x -axis
- Change the x-axis to another curve, $y=g(x)$ where $f(x) \geq g(x)$ for $x \in[a, b]$
- All that changes in our Riemann sum is that the

च $\begin{gathered}f(x) \\ f(x)\end{gathered}$ height of the box is now given by $f\left(x_{i}\right)-g\left(x_{i}\right)$.

- In other words, an approximation of the area between f and g is

$$
\sum_{i=1}^{n}\left(f\left(x_{i}\right)-g\left(x_{i}\right)\right) \Delta x
$$

Area between two curves

Again, as refinement yields better and better approximations, we have that the exact area between the curve is given by

$$
\int_{a}^{b}(f(x)-g(x)) d x
$$

EXAMPLES:

Area between two curves

Again, as refinement yields better and better approximations, we have that the exact area between the curve is given by

$$
\int_{a}^{b}(f(x)-g(x)) d x
$$

EXAMPLES:

- $f(x)=-x^{2}+x+3, g(x)=\frac{x^{2}}{3}+x-3, a=0, b=2$

Area between two curves

Again, as refinement yields better and better approximations, we have that the exact area between the curve is given by

$$
\int_{a}^{b}(f(x)-g(x)) d x
$$

EXAMPLES:

- $f(x)=-x^{2}+x+3, g(x)=\frac{x^{2}}{3}+x-3, a=0, b=2$
- Find the area of the region bounded by $f(x)=x^{2}$ and $g(x)=2 x-x^{2}$.

Area between two curves

Again, as refinement yields better and better approximations, we have that the exact area between the curve is given by

$$
\int_{a}^{b}(f(x)-g(x)) d x
$$

EXAMPLES:

- $f(x)=-x^{2}+x+3, g(x)=\frac{x^{2}}{3}+x-3, a=0, b=2$
- Find the area of the region bounded by $f(x)=x^{2}$ and $g(x)=2 x-x^{2}$.
- Find the area of the region bounded by $\sin (x)$ and $\cos (x)$ for $x \in\left[0, \frac{\pi}{2}\right]$.

Area between two curves

Again, as refinement yields better and better approximations, we have that the exact area between the curve is given by

$$
\int_{a}^{b}(f(x)-g(x)) d x
$$

EXAMPLES:

- $f(x)=-x^{2}+x+3, g(x)=\frac{x^{2}}{3}+x-3, a=0, b=2$
- Find the area of the region bounded by $f(x)=x^{2}$ and $g(x)=2 x-x^{2}$.
- Find the area of the region bounded by $\sin (x)$ and $\cos (x)$ for $x \in\left[0, \frac{\pi}{2}\right]$.
- Theorem: The area between the curves $y=f(x)$ and $y=g(x)$ for $x \in[a, b]$ is

$$
A=\int_{a}^{b}|f(x)-g(x)| d x
$$

Area between two curves

Again, as refinement yields better and better approximations, we have that the exact area between the curve is given by

$$
\int_{a}^{b}(f(x)-g(x)) d x
$$

EXAMPLES:

- $f(x)=-x^{2}+x+3, g(x)=\frac{x^{2}}{3}+x-3, a=0, b=2$
- Find the area of the region bounded by $f(x)=x^{2}$ and $g(x)=2 x-x^{2}$.
- Find the area of the region bounded by $\sin (x)$ and $\cos (x)$ for $x \in\left[0, \frac{\pi}{2}\right]$.
- Theorem: The area between the curves $y=f(x)$ and $y=g(x)$ for $x \in[a, b]$ is

$$
A=\int_{a}^{b}|f(x)-g(x)| d x
$$

- Find the area of the region bounded by $x=y^{2}, y=x+5, y=2$ and $y=-1$.

Examples

- Consider the area between the curve $y=2 x-x^{2}$ and the x -axis. A line through the origin cuts this region into two pieces. Find the line that cuts the region into two pieces of equal area.

Examples

- Consider the area between the curve $y=2 x-x^{2}$ and the x -axis. A line through the origin cuts this region into two pieces. Find the line that cuts the region into two pieces of equal area.
- General line: $y=m x+b$. Line through origin:
 $y=m x$.

Examples

- Consider the area between the curve $y=2 x-x^{2}$ and the x -axis. A line through the origin cuts this region into two pieces. Find the line that cuts the region into two pieces of equal area.
- General line: $y=m x+b$. Line through origin:
 $y=m x$.
- Two region R_{1} and R_{2} have areas A_{1} and A_{2}.

Examples

- Consider the area between the curve $y=2 x-x^{2}$ and the x -axis. A line through the origin cuts this region into two pieces. Find the line that cuts the region into two pieces of equal area.
- General line: $y=m x+b$. Line through origin:
 $y=m x$.
- Two region R_{1} and R_{2} have areas A_{1} and A_{2}.

- To find A_{1} and A_{2}, we must find the points of intersection.

Example (cont)

Set the two equations equal to one another:

Example (cont)

Set the two equations equal to one another:

$$
\begin{aligned}
2 x-x^{2} & =m x \\
(2-m) x-x^{2} & =0 \\
x((2-m)-x) & =0
\end{aligned}
$$

Example (cont)

Set the two equations equal to one another:

$$
\begin{aligned}
2 x-x^{2} & =m x \\
(2-m) x-x^{2} & =0 \\
x((2-m)-x) & =0
\end{aligned}
$$

- The points occur at $x=0$ and $x=2-m$.

Example (cont)

Set the two equations equal to one another:

$$
\begin{aligned}
2 x-x^{2} & =m x \\
(2-m) x-x^{2} & =0 \\
x((2-m)-x) & =0
\end{aligned}
$$

- The points occur at $x=0$ and $x=2-m$.
- For R_{1}, we have $f(x)=2 x-x^{2}, g(x)=m x$ and $x \in[0,2-m]$.

Example (cont)

To compute A_{1}, the area of R_{1} :

Example (cont)

To compute A_{1}, the area of R_{1} :

$$
\begin{aligned}
\int_{0}^{2-m}\left(2 x-x^{2}\right)-m x d x & =\int_{0}^{2-m}(2-m) x-x^{2} d x \\
& =\left.\left(\frac{(2-m)}{2} x^{2}-\frac{x^{3}}{3}\right)\right|_{0} ^{2-m} \\
& =\frac{(2-m)^{3}}{2}-\frac{(2-m)^{3}}{3} \\
& =\frac{(2-m)^{3}}{6}
\end{aligned}
$$

Example (cont)

To compute A_{1}, the area of R_{1} :

$$
\begin{aligned}
\int_{0}^{2-m}\left(2 x-x^{2}\right)-m x d x & =\int_{0}^{2-m}(2-m) x-x^{2} d x \\
& =\left.\left(\frac{(2-m)}{2} x^{2}-\frac{x^{3}}{3}\right)\right|_{0} ^{2-m} \\
& =\frac{(2-m)^{3}}{2}-\frac{(2-m)^{3}}{3} \\
& =\frac{(2-m)^{3}}{6}
\end{aligned}
$$

So,

$$
A_{1}=\frac{(2-m)^{3}}{6}
$$

Example (cont)

Next, we compute A_{2} :

Example (cont)

Next, we compute A_{2} :

- R_{2} is a little more complicated - it has two parts.

Example (cont)

Next, we compute A_{2} :

- R_{2} is a little more complicated - it has two parts.
- Compute triagular portion first: it is just the area under the line for $x \in[0,2-m]$. The area is $\frac{1}{2}(2-m)^{2} m$

Example (cont)

Next, we compute A_{2} :

- R_{2} is a little more complicated - it has two parts.
- Compute triagular portion first: it is just the area under the line for $x \in[0,2-m]$. The area is $\frac{1}{2}(2-m)^{2} m$

- Now the right hand portion: it is just the area under the curve $y=2 x-x^{2}$ for $x \in[2-m, 2]$. The area is $\frac{4}{3}-(2-m)^{2}+\frac{1}{3}(2-m)^{3}$

Example (cont)

Next, we compute A_{2} :

- R_{2} is a little more complicated - it has two parts.
- Compute triagular portion first: it is just the area under the line for $x \in[0,2-m]$. The area is $\frac{1}{2}(2-m)^{2} m$

- Now the right hand portion: it is just the area under the curve $y=2 x-x^{2}$ for $x \in[2-m, 2]$. The area is $\frac{4}{3}-(2-m)^{2}+\frac{1}{3}(2-m)^{3}$

$$
A_{2}=-\frac{(2-m)^{3}}{6}
$$

Example (cont)

Putting this together we have that

$$
\begin{aligned}
A_{1} & =\frac{(2-m)^{3}}{6} \\
A_{2} & =-\frac{(2-m)^{3}}{6}
\end{aligned}
$$

For the two to be equal we must have that $2-m=0$ or $m=2$.

