m8w05, Quiz 1 Name: Section:

Answer ALL questions. Unless instructed otherwise, you should show ALL your work and simplify your final answer as much as possible. Please box your final answer to each part.

Problem 1: [8 pts] Find the following indefinite integral

$$
\int \frac{9}{x^{2} \sqrt{9+4 x^{2}}} d x
$$

Solution:

Construct a right-triangle with hypotenuse $\sqrt{9+4 x^{2}}$, opposite $2 x$ and adjacent 3 . This suggests the subsitution $\tan \theta=\frac{2 x}{3}$. Then $d x=\frac{3}{2} \sec ^{2} \theta d \theta$ and the integral becomes

$$
\int \frac{4 \sec \theta}{\tan ^{2} \theta} d \theta=\int \frac{4 \cos \theta}{\sin ^{2} \theta} d \theta=-\frac{4}{\sin \theta}+C
$$

Using the triangle, we see that $\sin \theta=\frac{2 x}{\sqrt{9+4 x^{2}}}$. And so our final solution is

$$
-\frac{2}{x} \sqrt{9+4 x^{2}}+C .
$$

Problem 2: [9 pts] Find the area of the region bounded by the curves $y=\arctan x$ and $y=x \arctan x$.

Solution:

The two curves intersect when $\arctan x=x \arctan x$, which happens when $x=1$ or $\arctan x=0$, i.e at $x=0,1$. Between 0 and 1 we see $\arctan x \geq x \arctan x$. Thus the area is

$$
\text { Area }=\int_{0}^{1}(\arctan x-x \arctan x) d x
$$

Integrate by parts with $u=\arctan x$ and $d v=(1-x) d x$. Then $d u=\frac{1}{1+x^{2}} d x$ and $v=x-\frac{1}{2} x^{2}$. Thus

$$
\begin{aligned}
\text { Area } & =\left[\left(x-\frac{1}{2} x^{2}\right) \arctan x\right]_{0}^{1}-\int_{0}^{1} \frac{x}{1+x^{2}}-\frac{1}{2} \frac{x^{2}}{1+x^{2}} d x \\
& =\frac{\pi}{8}-\int_{0}^{1} \frac{x}{1+x^{2}}-\frac{1}{2}+\frac{1}{2} \frac{1}{1+x^{2}} \\
& =\frac{\pi}{8}-\frac{1}{2}\left[\ln \left|1+x^{2}\right|-x+\arctan x\right]_{0}^{1} \\
& =\frac{\pi}{8}-\frac{1}{2}\left(\ln 2-1+\frac{\pi}{4}\right) \\
& =\frac{1}{2}-\frac{1}{2} \ln 2
\end{aligned}
$$

Problem 3: [8 pts] The unbounded region R is bounded above by the curve $y=\frac{1}{\sqrt{x^{2}+3 x+2}}$, below by the $x-a x i s$ and to the left by $x=0$. This region R is rotated about the $x-a x i s$. Is the volume of the resulting solid finite or infinite? If it is finite, evaluate it.

Solution:

The volume is given by the improper integral

$$
\text { Volume }=\int_{0}^{\infty} \frac{\pi}{x^{2}+3 x+2} d x=\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{\pi}{(x+1)(x+2)} d x
$$

Apply partial fractions, i.e. find A and B so that $\frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}$. Multiplying through yields $1=A(x+2)+B(x+1)$. Choose $x=-1$ to see that $A=1$ and $x=-2$ to see that $B=-1$. Then

$$
\begin{aligned}
\text { Volume } & =\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{\pi}{x+1}-\frac{\pi}{x+2} d x \\
& =\lim _{t \rightarrow \infty}[\pi \ln |x+1|-\pi \ln |x+2|]_{0}^{t} \\
& =\pi \lim _{t \rightarrow \infty} \ln \left|\frac{t+1}{t+2}\right|+\pi \ln 2 \\
& =\pi \ln 1+\pi \ln 2 \\
& =\pi \ln 2
\end{aligned}
$$

Therefore the volume is finite and of value $\pi \ln 2$.

