Problem Set 3. Due on Friday, 10/25/2013.

1. Prove that

$$
\frac{1}{1-z}=\prod_{j \geq 0}\left(1+z^{2^{j}}\right)
$$

2. For fixed k, give the exponential generating function for the number of surjective maps from $[n]$ onto $[k]$.
3. (a) Let b_{n} denote the number of (labeled) rooted trees on the vertex set $[n]$ whose leaves (i.e., vertices with no children) are colored either red of blue. Find an equation satisfied by the exponential generating function

$$
B(z)=\sum_{n \geq 0} b_{n} \frac{z^{n}}{n!}=2 z+4 \frac{z^{2}}{2!}+24 \frac{z^{3}}{3!}+\ldots
$$

(b) Use the Lagrange inversion formula to deduce that

$$
b_{n}=\sum_{k=0}^{n}\binom{n}{k} k^{n-1}
$$

(c) * Give a direct combinatorial proof of (b).
4. Describe an explicit bijection between the set of (unlabeled) rooted plane trees with n edges and the set of Dyck paths with $2 n$ steps.
5. Let $M(n)$ be the set of all subsets of $[n]$, with the ordering $A \leq B$ if the elements of A are $a_{1}>a_{2}>\cdots>a_{j}$ and the elements of B are $b_{1}>b_{2}>\cdots>b_{k}$, where $j \leq k$ and $a_{i} \leq b_{i}$ for $1 \leq i \leq j$. (The empty set \emptyset is the bottom element of $M(n)$.)
(a) Draw the Hasse diagrams (with vertices labeled by the subsets they represent) of $M(1), M(2), M(3)$, and $M(4)$.
(b) Show that $M(n)$ is graded of $\operatorname{rank}\binom{n+1}{2}$. What is $\operatorname{rank}\left(\left\{a_{1}, \ldots, a_{k}\right\}\right)$?
(c) Define the rank-generating function of a graded poset P to be

$$
F(P, q):=\sum_{x \in P} q^{\operatorname{rank}(x)}
$$

Show that the rank-generating function of $M(n)$ is given by

$$
F(M(n), q)=(1+q)\left(1+q^{2}\right) \cdots\left(1+q^{n}\right)
$$

6. * Let h_{n} be the number of ways to choose a permutation π of $[n]$ and a subset S of $[n]$ such that if $i \in S$, then $\pi(i) \notin S$. Find an expression for the exponential generating function $\sum_{n \geq 0} h_{n} \frac{z^{n}}{n!}$.
7. ** (Extra credit) If you solved problem 7 in Problem Set 2 bijectively, as part of your solution you probably found a bijection between paths with $2 n$ steps $N=(0,1)$ and $E=(1,0)$ starting at the origin and ending at (n, n) (sometimes called Grand Dyck paths, and counted by $\binom{2 n}{n}$) and paths with $2 n$ steps N and E starting at the origin and not going below $y=x$ (sometimes called ballot paths). Concatenating a ballot path with its reflection gives a trivial bijection between ballot paths of length $2 n$ and symmetric Dyck paths of length $4 n$.
Define the height of an occurrence of $N N E$ in a lattice path to be one plus the number of N steps before the occurrence. For example, $N N E E N N E E$ has occurrences of $N N E$ at heights 1 and 3 . Define the position of an occurrence of $N E$ to be one plus the total number of steps before the occurrence. For example, $N E N E$ has occurrences of $N E$ in positions 1 and 3 .
Find a bijection between symmetric Dyck paths of length $4 n$ and Grand Dyck paths of length $2 n$ that maps the heights of the occurrences of $N N E$ to the positions of the occurrences of $N E$.
(As an example, note that the heights of the occurrences of $N N E$ in the 6 symmetric Dyck paths of length 8 are $\emptyset,\{1\},\{2\},\{2\},\{3\},\{1,3\}$, which are also the positions of the occurrences of $N E$ in Grand Dyck paths of length 4 .)
