## Math 68. Algebraic Combinatorics.

## Problem Set 2. Due on Friday, 10/11/2013.

1. Find the ordinary generating function of the sequence $a_{n}=2 \cdot 3^{n}-n^{2}$ (for $n \geq 0$ ) in a simple, closed form.
2. Consider the recurrence $a_{n+3}=3 a_{n+2}-4 a_{n}$, with initial conditions $a_{0}=1, a_{1}=2$, $a_{2}=6$. Find the ordinary generating function $\sum_{n \geq 0} a_{n} z^{n}$ and the expression of the general term $a_{n}$.
3. Find a generating function $A(z)$ such that the coefficient of $z^{100}$ is the number of ways to give change of a dollar using cents, nickels, dimes, and quarters.
4. Prove that the number of compositions of $n$ with an even number of parts is $2^{n-2}$.
5. Given two sequences $\left\{a_{n}\right\}_{n \geq 0}$ and $\left\{b_{n}\right\}_{n \geq 0}$, its Hadamard product is the sequence $\left\{a_{n} b_{n}\right\}_{n \geq 0}$. Show that if $\left\{a_{n}\right\}_{n \geq 0}$ and $\left\{b_{n}\right\}_{n \geq 0}$ have rational generating functions, then so does their Hadamard product.
6. Find an expression for $S(n, k)$ (the Stirling number of the second kind) by extracting the coefficient of $z^{n}$ in the exponential generating function for set partitions with $k$ blocks.
7. Prove that

$$
\sum_{k=0}^{n}\binom{2 k}{k}\binom{2(n-k)}{n-k}=4^{n}
$$

Hint: There is a bijective proof, but if you can't find it, try using generating functions instead.

