Math 68. Algebraic Combinatorics.

Problem Set 2. Due on Friday, 10/11/2013.

- 1. Find the ordinary generating function of the sequence $a_n = 2 \cdot 3^n n^2$ (for $n \ge 0$) in a simple, closed form.
- 2. Consider the recurrence $a_{n+3} = 3a_{n+2} 4a_n$, with initial conditions $a_0 = 1$, $a_1 = 2$, $a_2 = 6$. Find the ordinary generating function $\sum_{n\geq 0} a_n z^n$ and the expression of the general term a_n .
- 3. Find a generating function A(z) such that the coefficient of z^{100} is the number of ways to give change of a dollar using cents, nickels, dimes, and quarters.
- 4. Prove that the number of compositions of n with an even number of parts is 2^{n-2} .
- 5. Given two sequences $\{a_n\}_{n\geq 0}$ and $\{b_n\}_{n\geq 0}$, its Hadamard product is the sequence $\{a_nb_n\}_{n\geq 0}$. Show that if $\{a_n\}_{n\geq 0}$ and $\{b_n\}_{n\geq 0}$ have rational generating functions, then so does their Hadamard product.
- 6. Find an expression for S(n,k) (the Stirling number of the second kind) by extracting the coefficient of z^n in the exponential generating function for set partitions with k blocks.
- 7. Prove that

$$\sum_{k=0}^{n} \binom{2k}{k} \binom{2(n-k)}{n-k} = 4^{n}.$$

Hint: There is a bijective proof, but if you can't find it, try using generating functions instead.