Math 68. Algebraic Combinatorics.

Problem Set 1. Due on Friday, 9/27/2013

1. Prove the identities

$$
\sum_{i=0}^{n}\binom{i}{k}=\binom{n+1}{k+1}, \quad \sum_{i=0}^{n}\binom{m+i}{i}=\binom{m+n+1}{n}
$$

combinatorially, by showing that both sides of each equality count the same thing.
2. Give a combinatorial proof of the equality

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0
$$

by describing a bijection between subsets of $[n]$ of odd size and subsets of $[n]$ of even size.
3. Let $[n]=\{1,2, \ldots, n\}$.
(a) Find the number of k-tuples $\left(S_{1}, S_{2}, \ldots, S_{k}\right)$ of subsets of [n] such that $S_{1} \subseteq S_{2} \subseteq$ $\cdots \subseteq S_{k}$.
(b) Find the number of k-tuples $\left(S_{1}, S_{2}, \ldots, S_{k}\right)$ of subsets of [n] such that $S_{1} \cap S_{2} \cap \cdots \cap$ $S_{k}=\emptyset$.
4. A Delannoy path is a lattice path in \mathbb{Z}^{2} from $(0,0)$ to (m, n) using steps $(1,0)$ (horizontal), $(0,1)$ (vertical), and (1,1) (diagonal). The number of these paths is the Delannoy number $D_{m, n}$. For example, $D_{2,1}=5$. Prove that

$$
D_{m, n}=\sum_{k}\binom{m}{k}\binom{n+k}{m}
$$

Hint: Classify the paths according to the number of diagonal steps.
5. Prove that the number of partitions of n into odd parts equals the number of partitions of n into distinct parts.
6. (a) In how many ways can we choose k points, no two consecutive, from a collection of n points arranged in a line?
(b) What if the n points are arranged in a circle?
7. A set partition π of $[n]$ is a way to subdivide $[n]$ into nonempty blocks. A set partition is called noncrossing if it contains no two blocks B and B^{\prime} such that $i, k \in B$ and $j, l \in B^{\prime}$ for some $i<j<k<l$. Show that the number of noncrossing partitions equals the Catalan number $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$.

