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Binomial Coe�cients

De�nition. The number of distinct subsets with j elements that
can be chosen from a set with n elements is denoted by

(
n
j

)
. The

number
(
n
j

)
is called a binomial coe�cient.
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Recurrence Relation

Theorem. For integers n and j, with 0 < j < n, the binomial
coe�cients satisfy:

(
n

j

)
=

(
n− 1

j

)
+

(
n− 1
j − 1

)
.
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Pascal's triangle

n = 0            1

10            1        10        45      120      210      252      210      120        45        10           1     

 9            1          9        36        84      126      126        84        36          9          1 

8            1          8        28        56        70        56        28          8          1

7            1          7        21        35        35        21          7          1

6            1          6        15        20        15          6          1
5            1          5        10        10          5          1
4            1          4          6          4          1

3            1          3          3          1

2            1          2          1
1            1          1

j = 0          1          2          3          4          5          6          7          8          9          10
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Theorem. The binomial coe�cients are given by the formula
(

n

j

)
=

(n)j

j!
=

n!
j!(n− j)!

.
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Bernoulli Trials

De�nition. A Bernoulli trials process is a sequence of n chance
experiments such that

1. Each experiment has two possible outcomes, which we may call
success and failure.

2. The probability p of success on each experiment is the same
for each experiment, and this probability is not a�ected by any
knowledge of previous outcomes. The probability q of failure is
given by q = 1− p.
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Binomial Probabilities

We denote by b(n, p, j) the probability that in n Bernoulli trials
there are exactly j successes.
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Binomial Probabilities

We denote by b(n, p, j) the probability that in n Bernoulli trials
there are exactly j successes.

Theorem. Given n Bernoulli trials with probability p of success on
each experiment, the probability of exactly j successes is

b(n, p, j) =
(

n

j

)
pjqn−j

where q = 1− p.
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Binomial Distributions

De�nition. Let n be a positive integer, and let p be a real number
between 0 and 1. Let B be the random variable which counts the
number of successes in a Bernoulli trials process with parameters n
and p. Then the distribution b(n, p, j) of B is called the binomial
distribution.
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Binomial Expansion

Theorem. The quantity (a + b)n can be expressed in the form

(a + b)n =
n∑

j=0

(
n

j

)
ajbn−j .
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Corollary. The sum of the elements in the nth row of Pascal's
triangle is 2n. If the elements in the nth row of Pascal's triangle are
added with alternating signs, the sum is 0.
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Inclusion-Exclusion Principle

Theorem. Let P be a probability distribution on a sample space
Ω, and let {A1, A2, . . . , An} be a �nite set of events. Then

P (A1 ∪A2 ∪ · · · ∪An) =
n∑

i=1

P (Ai) −
∑

1≤i<j≤n

P (Ai ∩Aj)

+
∑

1≤i<j<k≤n

P (Ai∩Aj∩Ak)−· · · .

That is, to �nd the probability that at least one of n events Ai

occurs, �rst add the probability of each event, then subtract the
probabilities of all possible two-way intersections, add the probability
of all three-way intersections, and so forth.
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Hat Check Problem

In a restaurant n hats are checked and they are hopelessly scram-
bled; what is the probability that no one gets his own hat back?
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Hat Check Problem

In a restaurant n hats are checked and they are hopelessly scram-
bled; what is the probability that no one gets his own hat back?

Find the probability that a random permutation contains at least
one �xed point.

Combinations, April 12, 2006 13



Hat Check Problem

In a restaurant n hats are checked and they are hopelessly scram-
bled; what is the probability that no one gets his own hat back?

Find the probability that a random permutation contains at least
one �xed point.

• If Ai is the event that the ith element ai remains �xed under this
map, then

P (Ai) =
1
n
.
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• If we �x a particular pair (ai, aj), then

P (Ai

⋂
Aj) =

1
n(n− 1)

.

• The number of terms of the form P (Ai

⋂
Aj) is

(
n
2

)
.
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• `For any three events A1, A2, A3

P (Ai ∩Aj ∩Ak) =
(n− 3)!

n!
=

1
n(n− 1)(n− 2)

,

and the number of such terms is
(

n

3

)
=

n(n− 1)(n− 2)
3!

.

• Hence

P (at least one �xed point) = 1− 1
2!

+
1
3!
− · · · (−1)n−1 1

n!
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and
P (no �xed point) =

1
2!
− 1

3!
+ · · · (−1)n 1

n!
.
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Probability that no one
n gets his own hat back
3 .333333
4 .375
5 .366667
6 .368056
7 .367857
8 .367882
9 .367879
10 .367879
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Problems

Show that the number of ways that one can put n di�erent objects
into three boxes with a in the �rst, b in the second, and c in the third
is n!/(a! b! c!).
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Problems ...

Suppose that a die is rolled 20 independent times, and each time
we record whether or not the event {2, 3, 5, 6} has occurred.

1. What is the distribution of the number of times this event occurs
in 20 rolls?

2. Calculate the probability that the event occurs �ve times.
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Problems ...

Suppose that a basketball player sinks a basket from a certain
position on the court with probability 0.35.

1. What is the probability that the player sinks three baskets in ten
independent throws?

2. What is the probability that the player throws ten times before
obtaining the �rst basket?

3. What is the probability that the player throws ten times before
obtaining two baskets?
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