Random Walks in Euclidian Space

05/19/2006

Definition. 1. Let $\left\{X_{k}\right\}_{k=1}^{\infty}$ be a sequence of independent, identically distributed discrete random variables. For each positive integer n, we let S_{n} denote the sum $X_{1}+X_{2}+\cdots+X_{n}$. The sequence $\left\{S_{n}\right\}_{n=1}^{\infty}$ is called a random walk.
2. We say that an equalization has occurred, or there is a return to the origin at time n, if $S_{n}=0$

Theorem. The probability of a return to the origin at time $2 m$ is given by

$$
u_{2 m}=\binom{2 m}{m} 2^{-2 m}
$$

Theorem. For $m \geq 1$, the probability of a first return to the origin at time $2 m$ is given by

$$
f_{2 m}=\frac{u_{2 m}}{2 m-1}=\frac{\binom{2 m}{m}}{(2 m-1) 2^{2 m}}
$$

- Generating functions

$$
U(x)=\sum_{m=0}^{\infty} u_{2 m} x^{m}
$$

and

$$
F(x)=\sum_{m=0}^{\infty} f_{2 m} x^{m}
$$

Probability of Eventual Return

- In the symmetric random walk process in \mathbf{R}^{m}, what is the probability that the particle eventually returns to the origin?

Eventual Return in \mathbf{R}^{1}

- We will define w_{n} to be the probability that a first return has occurred no later than time n.
- Define the probability that the particle eventually returns to the origin to be

$$
w_{*}=\lim _{n \rightarrow \infty} w_{n} .
$$

- In terms of the f_{n} probabilities, we see that

$$
w_{2 n}=\sum_{i=1}^{n} f_{2 i} .
$$

Theorem. With probability one, the particle returns to the origin.

Eventual Return in \mathbf{R}^{m}

- We define $f_{2 n}^{(m)}$ to be the probability that the first return to the origin in \mathbf{R}^{m} occurs at time $2 n$.
- The quantity $u_{2 n}^{(m)}$ is defined in a similar manner.
- For all $m \geq 1$,

$$
u_{2 n}^{(m)}=f_{0}^{(m)} u_{2 n}^{(m)}+f_{2}^{(m)} u_{2 n-2}^{(m)}+\cdots+f_{2 n}^{(m)} u_{0}^{(m)}
$$

- Define

$$
U^{(m)}(x)=\sum_{n=0}^{\infty} u_{2 n}^{(m)} x^{n}
$$

and

$$
F^{(m)}(x)=\sum_{n=0}^{\infty} f_{2 n}^{(m)} x^{n}
$$

$$
w_{*}^{(m)}=\lim _{x \uparrow 1} F^{(m)}(x)=\lim _{x \uparrow 1} \frac{U^{(m)}(x)-1}{U^{(m)}(x)},
$$

- $\ln \mathbb{R}^{2}$ the probability of eventual return is 1 .
- In \mathbb{R}^{3} the probability of eventual return is strictly less than 1.

Expected Number of Equalizations

- Derive a formula for the expected number of equalizations in a random walk of length $2 m$.

Expected Number of Equalizations

- Derive a formula for the expected number of equalizations in a random walk of length 2 m .
- Define $g_{2 m}$ to be the number of equalizations among all of the random walks of length $2 m$.
- We define $g_{0}=0$.
- We define the generating function $G(x)$:

$$
G(x)=\sum_{k=0}^{\infty} g_{2 k} x^{k}
$$

- We consider m to be a fixed positive integer, and consider the set of all paths of length $2 m$ as the disjoint union

$$
E_{2} \cup E_{4} \cup \cdots \cup E_{2 m} \cup H,
$$

- We claim that the number of equalizations among all paths belonging to the set $E_{2 k}$ is equal to

$$
\left|E_{2 k}\right|+2^{2 k} f_{2 k} g_{2 m-2 k}
$$

- The functional equation is

$$
G(x)=F(4 x) G(x)+\frac{1}{1-4 x}-U(4 x) .
$$

- If we simplify, we obtain

$$
G(x)=\frac{1}{(1-4 x)^{3 / 2}}-\frac{1}{(1-4 x)} .
$$

- The expected number of equalizations among all paths of length $2 m$ is

$$
\frac{g_{2 m}}{2^{2 m}} \sim \sqrt{\frac{2}{\pi}} \sqrt{2 m} .
$$

