Random Walks

May 17, 2006

Random Walks in Euclidean Space

Definition. Let $\left\{X_{k}\right\}_{k=1}^{\infty}$ be a sequence of independent, identically distributed discrete random variables. For each positive integer n, we let S_{n} denote the sum $X_{1}+X_{2}+\cdots+X_{n}$. The sequence $\left\{S_{n}\right\}_{n=1}^{\infty}$ is called a random walk. If the common range of the X_{k} 's is \mathbf{R}^{m}, then we say that $\left\{S_{n}\right\}$ is a random walk in \mathbf{R}^{m}.

Example

- One can imagine that a particle is placed at the origin in \mathbf{R}^{m} at time $n=0$.
- The sum S_{n} represents the position of the particle at the end of n seconds.
- Thus, in the time interval $[n-1, n]$, the particle moves (or jumps) from position S_{n-1} to S_{n}.
- The vector representing this motion is just $S_{n}-S_{n-1}$, which equals X_{n}.
- Another model of a random walk is a game, involving two people, which consists of a sequence of independent, identically distributed moves.
- The sum S_{n} represents the score of the first person, say, after n moves, with the assumption that the score of the second person is $-S_{n}$.

Random Walks on the Real Line

- The common distribution function of the random variables X_{n} is given by

$$
f_{X}(x)= \begin{cases}1 / 2, & \text { if } x= \pm 1, \\ 0, & \text { otherwise. }\end{cases}
$$

Returns and First Returns

Definition. We say that an equalization has occurred, or there is a return to the origin at time n, if $S_{n}=0$.

Returns and First Returns

Definition. We say that an equalization has occurred, or there is a return to the origin at time n, if $S_{n}=0$.

Theorem. The probability of a return to the origin at time $2 m$ is given by

$$
u_{2 m}=\binom{2 m}{m} 2^{-2 m}
$$

The probability of a return to the origin at an odd time is 0 .

- A random walk is said to have a first return to the origin at time $2 m$ if $m>0$, and $S_{2 k} \neq 0$ for all $k<m$.
- We define $f_{2 m}$ to be the probability of this event.

Theorem. For $n \geq 1$, the probabilities $\left\{u_{2 k}\right\}$ and $\left\{f_{2 k}\right\}$ are related by the equation

$$
u_{2 n}=f_{0} u_{2 n}+f_{2} u_{2 n-2}+\cdots+f_{2 n} u_{0}
$$

Theorem. For $m \geq 1$, the probability of a first return to the origin at time $2 m$ is given by

$$
f_{2 m}=\frac{u_{2 m}}{2 m-1}=\frac{\binom{2 m}{m}}{(2 m-1) 2^{2 m}}
$$

Proof. Define the generating functions

$$
U(x)=\sum_{m=0}^{\infty} u_{2 m} x^{m}
$$

and

$$
F(x)=\sum_{m=0}^{\infty} f_{2 m} x^{m}
$$

Probability of Eventual Return

- In the symmetric random walk process in \mathbf{R}^{m}, what is the probability that the particle eventually returns to the origin?

Eventual Return in \mathbf{R}^{1}

- We will define w_{n} to be the probability that a first return has occurred no later than time n.
- Define the probability that the particle eventually returns to the origin to be

$$
w_{*}=\lim _{n \rightarrow \infty} w_{n}
$$

- In terms of the f_{n} probabilities, we see that

$$
w_{2 n}=\sum_{i=1}^{n} f_{2 i}
$$

Theorem. With probability one, the particle returns to the origin.

Eventual Return in \mathbf{R}^{m}

- We define $f_{2 n}^{(m)}$ to be the probability that the first return to the origin in \mathbf{R}^{m} occurs at time $2 n$.
- The quantity $u_{2 n}^{(m)}$ is defined in a similar manner.
- For all $m \geq 1$,

$$
u_{2 n}^{(m)}=f_{0}^{(m)} u_{2 n}^{(m)}+f_{2}^{(m)} u_{2 n-2}^{(m)}+\cdots+f_{2 n}^{(m)} u_{0}^{(m)}
$$

- Define

$$
U^{(m)}(x)=\sum_{n=0}^{\infty} u_{2 n}^{(m)} x^{n}
$$

and

$$
F^{(m)}(x)=\sum_{n=0}^{\infty} f_{2 n}^{(m)} x^{n}
$$

$$
w_{*}^{(m)}=\lim _{x \uparrow 1} F^{(m)}(x)=\lim _{x \uparrow 1} \frac{U^{(m)}(x)-1}{U^{(m)}(x)},
$$

- $\ln \mathbb{R}^{2}$ the probability of eventual return is 1 .
- In \mathbb{R}^{3} the probability of eventual return is strictly less than 1.

