Random Walks

May 17, 2006

Random Walks

Random Walks in Euclidean Space

Definition. Let $\{X_k\}_{k=1}^{\infty}$ be a sequence of independent, identically distributed discrete random variables. For each positive integer n, we let S_n denote the sum $X_1 + X_2 + \cdots + X_n$. The sequence $\{S_n\}_{n=1}^{\infty}$ is called a random walk. If the common range of the X_k 's is \mathbf{R}^m , then we say that $\{S_n\}$ is a random walk in \mathbf{R}^m .

Example

- One can imagine that a particle is placed at the origin in \mathbf{R}^m at time n=0.
- The sum S_n represents the position of the particle at the end of n seconds.
- Thus, in the time interval [n-1,n], the particle moves (or jumps) from position S_{n-1} to S_n .
- The vector representing this motion is just $S_n S_{n-1}$, which equals X_n .

- Another model of a random walk is a game, involving two people, which consists of a sequence of independent, identically distributed moves.
- The sum S_n represents the score of the first person, say, after n moves, with the assumption that the score of the second person is $-S_n$.

Random Walks on the Real Line

 \bullet The common distribution function of the random variables X_n is given by

$$f_X(x) = \begin{cases} 1/2, & \text{if } x = \pm 1, \\ 0, & \text{otherwise.} \end{cases}$$

Returns and First Returns

Definition. We say that an equalization has occurred, or there is a return to the origin at time n, if $S_n = 0$.

Returns and First Returns

Definition. We say that an equalization has occurred, or there is a return to the origin at time n, if $S_n = 0$.

Theorem. The probability of a return to the origin at time 2m is given by

$$u_{2m} = \binom{2m}{m} 2^{-2m} \ .$$

The probability of a return to the origin at an odd time is 0.

- A random walk is said to have a *first return* to the origin at time 2m if m > 0, and $S_{2k} \neq 0$ for all k < m.
- We define f_{2m} to be the probability of this event.

Theorem. For $n \ge 1$, the probabilities $\{u_{2k}\}$ and $\{f_{2k}\}$ are related by the equation

$$u_{2n} = f_0 u_{2n} + f_2 u_{2n-2} + \dots + f_{2n} u_0$$
.

Theorem. For $m \ge 1$, the probability of a first return to the origin at time 2m is given by

$$f_{2m} = \frac{u_{2m}}{2m-1} = \frac{\binom{2m}{m}}{(2m-1)2^{2m}}$$

٠

Proof. Define the generating functions

$$U(x) = \sum_{m=0}^{\infty} u_{2m} x^m$$

 and

$$F(x) = \sum_{m=0}^{\infty} f_{2m} x^m .$$

Random Walks

Probability of Eventual Return

• In the symmetric random walk process in \mathbf{R}^m , what is the probability that the particle eventually returns to the origin?

Eventual Return in \mathbf{R}^1

- We will define w_n to be the probability that a first return has occurred no later than time n.
- Define the probability that the particle eventually returns to the origin to be

$$w_* = \lim_{n \to \infty} w_n \; .$$

• In terms of the f_n probabilities, we see that

$$w_{2n} = \sum_{i=1}^n f_{2i} \; .$$

Theorem. With probability one, the particle returns to the origin.

Eventual Return in \mathbf{R}^m

- We define $f_{2n}^{(m)}$ to be the probability that the first return to the origin in \mathbf{R}^m occurs at time 2n.
- The quantity $u_{2n}^{(m)}$ is defined in a similar manner.
- For all $m\geq 1$,

$$u_{2n}^{(m)} = f_0^{(m)} u_{2n}^{(m)} + f_2^{(m)} u_{2n-2}^{(m)} + \dots + f_{2n}^{(m)} u_0^{(m)}$$

• Define

$$U^{(m)}(x) = \sum_{n=0}^{\infty} u_{2n}^{(m)} x^n$$

 and

$$F^{(m)}(x) = \sum_{n=0}^{\infty} f_{2n}^{(m)} x^n .$$

$$w_*^{(m)} = \lim_{x \uparrow 1} F^{(m)}(x) = \lim_{x \uparrow 1} \frac{U^{(m)}(x) - 1}{U^{(m)}(x)} ,$$

Random Walks

- In \mathbb{R}^2 the probability of eventual return is 1.
- In \mathbb{R}^3 the probability of eventual return is *strictly* less than 1.