Simulation of Discrete Probabilities (cont'd)
 Discrete Probability Distributions

03/31/2006

Dice Rolling (cont'd)

- Recall that the french noblemen de Méré had been betting that, in four rolls of a die, at least one six would turn up.

Dice Rolling (cont'd)

- Recall that the french noblemen de Méré had been betting that, in four rolls of a die, at least one six would turn up.
- He changed the game to bet that, in 24 rolls of two dice, a pair of sixes would turn up.

Dice Rolling (cont'd)

- Recall that the french noblemen de Méré had been betting that, in four rolls of a die, at least one six would turn up.
- He changed the game to bet that, in 24 rolls of two dice, a pair of sixes would turn up.
- He felt that 25 rolls were necessary to make the game favorable.

Random Variables and Sample Spaces

- We represent the outcome of the experiment by a capital Roman letter, such as X, called a random variable.
- The sample space of the experiment is the set of all possible outcomes. If the sample space is either finite or countably infinite, the random variable is said to be discrete.
- The elements of a sample space are called outcome.
- A subset of the sample space is called an event.

Distribution Functions

Let X be a random variable which denotes the value of the outcome of a certain experiment, and assume that this experiment has only finitely many possible outcomes. Let Ω be the sample space of the experiment. A distribution function for X is a real-valued function m whose domain is Ω and which satisfies:

1. $m(\omega) \geq 0, \quad$ for all $\omega \in \Omega$, and
2. $\sum_{\omega \in \Omega} m(\omega)=1$.

For any subset E of Ω, we define the probability of E to be the number $P(E)$ given by

$$
P(E)=\sum_{\omega \in E} m(\omega)
$$

Examples

- Consider an experiment in which a coin is tossed twice. Let X be the random variable which corresponds to this experiment. What is the sample space and the distribution function?
- Three people, A, B, and C, are running for the same office, and we assume that one and only one of them wins. Suppose that A and B have the same chance of winning, but that C has only $1 / 2$ the chance of A or B. What is the probability to win for each of the three people?

Basic Set Operations

- Then the union of A and B is the set

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\} .
$$

- The intersection of A and B is the set

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\} .
$$

- The difference of A and B is the set

$$
A-B=\{x \mid x \in A \text { and } x \notin B\} .
$$

- The complement of A is the set

$$
\tilde{A}=\{x \mid x \in \Omega \text { and } x \notin A\} .
$$

Properties

The probabilities assigned to events by a distribution function on a sample space Ω satisfy the following properties:

1. $P(E) \geq 0$ for every $E \subset \Omega$.
2. $P(\Omega)=1$.
3. If $E \subset F \subset \Omega$, then $P(E) \leq P(F)$.
4. If A and B are disjoint subsets of Ω, then $P(A \cup B)=P(A)+$ $P(B)$.
5. $P(\tilde{A})=1-P(A)$ for every $A \subset \Omega$.

- For any two events A and B,

$$
P(A)=P(A \cap B)+P(A \cap \tilde{B})
$$

- If A and B are subsets of Ω, then

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

- If A_{1}, \ldots, A_{n} are pairwise disjoint subsets of Ω (i.e., no two of the A_{i} 's have an element in common), then

$$
P\left(A_{1} \cup \cdots \cup A_{n}\right)=\sum_{i=1}^{n} P\left(A_{i}\right) .
$$

- Let A_{1}, \ldots, A_{n} be pairwise disjoint events with $\Omega=A_{1} \cup \cdots \cup$ A_{n}, and let E be any event. Then

$$
P(E)=\sum_{i=1}^{n} P\left(E \cap A_{i}\right) .
$$

Uniform Distribution

The uniform distribution on a sample space Ω containing n elements is the function m defined by

$$
m(\omega)=\frac{1}{n}
$$

for every $\omega \in \Omega$.

Example

Consider the experiment that consists of rolling a pair of dice. We take as the sample space Ω the set of all ordered pairs (i, j) of integers with $1 \leq i \leq 6$ and $1 \leq j \leq 6$. Thus,

$$
\Omega=\{(i, j): 1 \leq i, j \leq 6\}
$$

