Law of Large Numbers

May 9, 2006

- An intuitive way to view the probability of a certain outcome is the frequency with which that outcome occurs in the long run.
- We defined probability mathematically as a value of a distribution function for the random variable representing the experiment.
- The Law of Large Numbers shows that this model is consistent with the frequency interpretation of probability.

Chebyshev Inequality

Theorem. Let X be a discrete random variable with expected value $\mu=E(X)$, and let $\epsilon>0$ be any positive real number. Then

$$
P(|X-\mu| \geq \epsilon) \leq \frac{V(X)}{\epsilon^{2}}
$$

Example

- Let X by any random variable with $E(X)=\mu$ and $V(X)=\sigma^{2}$.
- Then, if $\epsilon=k \sigma$, Chebyshev's Inequality states that

$$
P(|X-\mu| \geq k \sigma) \leq \frac{\sigma^{2}}{k^{2} \sigma^{2}}=\frac{1}{k^{2}} .
$$

- Thus, for any random variable, the probability of a deviation from the mean of more than k standard deviations is $\leq 1 / k^{2}$.
- Chebyshev's Inequality is the best possible inequality in the sense that, for any $\epsilon>0$, it is possible to give an example of a random variable for which Chebyshev's Inequality is in fact an equality.
- Chebyshev's Inequality is the best possible inequality in the sense that, for any $\epsilon>0$, it is possible to give an example of a random variable for which Chebyshev's Inequality is in fact an equality.
- Given $\epsilon>0$, choose X with distribution

$$
p_{X}=\left(\begin{array}{cc}
-\varepsilon & -\varepsilon \\
1 / 2 & 1 / 2
\end{array}\right)
$$

Then $E(X)=0, V(X)=\epsilon^{2}$, and

$$
P(|X-\mu| \geq \epsilon)=\frac{V(X)}{\epsilon^{2}}=1
$$

Law of Large Numbers

Theorem. Let $X_{1}, X_{2}, \ldots, X_{n}$ be an independent trials process, with finite expected value $\mu=E\left(X_{j}\right)$ and finite variance $\sigma^{2}=$ $V\left(X_{j}\right)$. Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then for any $\epsilon>0$,

$$
P\left(\left|\frac{S_{n}}{n}-\mu\right| \geq \epsilon\right) \rightarrow 0
$$

as $n \rightarrow \infty$. Equivalently,

$$
P\left(\left|\frac{S_{n}}{n}-\mu\right|<\epsilon\right) \rightarrow 1
$$

as $n \rightarrow \infty$.

Proof

- Since $X_{1}, X_{2}, \ldots, X_{n}$ are independent and have the same distributions,

$$
\begin{gathered}
V\left(S_{n}\right)=n \sigma^{2}, \\
V\left(\frac{S_{n}}{n}\right)=\frac{\sigma^{2}}{n} . \\
E\left(\frac{S_{n}}{n}\right)=\mu .
\end{gathered}
$$

Proof

- Since $X_{1}, X_{2}, \ldots, X_{n}$ are independent and have the same distributions,

$$
\begin{gathered}
V\left(S_{n}\right)=n \sigma^{2}, \\
V\left(\frac{S_{n}}{n}\right)=\frac{\sigma^{2}}{n} . \\
E\left(\frac{S_{n}}{n}\right)=\mu .
\end{gathered}
$$

- By Chebyshev's Inequality, for any $\epsilon>0$,

$$
P\left(\left|\frac{S_{n}}{n}-\mu\right| \geq \epsilon\right) \leq \frac{\sigma^{2}}{n \epsilon^{2}} .
$$

Law of Averages

- Consider the important special case of Bernoulli trials with probability p for success.
- Let $X_{j}=1$ if the j th outcome is a success and 0 if it is a failure.
- Then $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ is the number of successes in n trials and $\mu=E\left(X_{1}\right)=p$.
- The Law of Large Numbers states that for any $\epsilon>0$

$$
P\left(\left|\frac{S_{n}}{n}-p\right|<\epsilon\right) \rightarrow 1
$$

as $n \rightarrow \infty$.

Problem

- Show that the estimate

$$
P\left(\left|\frac{S_{n}}{n}-p\right| \geq \epsilon\right) \leq \frac{1}{4 n \epsilon^{2}}
$$

Problem

- We have two coins: one is a fair coin and the other is a coin that produces heads with probability $3 / 4$.
- One of the two coins is picked at random, and this coin is tossed n times.
- Let S_{n} be the number of heads that turns up in these n tosses.
- Does the Law of Large Numbers allow us to predict the proportion of heads that will turn up in the long run?
- After we have observed a large number of tosses, can we tell which coin was chosen?
- How many tosses suffice to make us 95 percent sure?

The Continuous Case

- (Chebyshev Inequality) Let X be a continuous random variable with density function $f(x)$. Suppose X has a finite expected value $\mu=E(X)$ and finite variance $\sigma^{2}=V(X)$. Then for any positive number $\epsilon>0$ we have

$$
P(|X-\mu| \geq \epsilon) \leq \frac{\sigma^{2}}{\epsilon^{2}}
$$

Law of Large Numbers

Theorem. Let $X_{1}, X_{2}, \ldots, X_{n}$ be an independent trials process with a continuous density function f, finite expected value μ, and finite variance σ^{2}. Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ be the sum of the X_{i}. Then for any real number $\epsilon>0$ we have

$$
\lim _{n \rightarrow \infty} P\left(\left|\frac{S_{n}}{n}-\mu\right| \geq \epsilon\right)=0
$$

or equivalently,

$$
\lim _{n \rightarrow \infty} P\left(\left|\frac{S_{n}}{n}-\mu\right|<\epsilon\right)=1
$$

