Variance of Discrete Random Variables

May 05, 2006

Variance

Definition

Let X be a numerically valued random variable with expected value $\mu = E(X)$. Then the *variance* of X, denoted by V(X), is

$$V(X) = E((X - \mu)^2)$$
.

Standard Deviation

The standard deviation of X, denoted by D(X), is $D(X) = \sqrt{V(X)}$. We often write σ for D(X) and σ^2 for V(X).

Calculation of Variance

Theorem. If X is any random variable with $E(X) = \mu$, then

 $V(X) = E(X^2) - \mu^2$.

Poisson Distribution

- Let X be a Poisson random variable with parameter λ .
- What is V(X)?

Properties of Variance

Theorem. If X is any random variable and c is any constant, then

 $V(cX) = c^2 V(X)$

and

$$V(X+c) = V(X) \ .$$

Theorem. Let X and Y be two independent random variables. Then

$$V(X+Y) = V(X) + V(Y).$$

Example

- Let X be an n Bernoulli trials process.
- What is V(X)?

Theorem. Let X_1, X_2, \ldots, X_n be an independent trials process with $E(X_j) = \mu$ and $V(X_j) = \sigma^2$. Let

$$S_n = X_1 + X_2 + \dots + X_n$$

be the sum, and

$$A_n = \frac{S_n}{n}$$

be the average. Then

$$E(S_n) = n\mu ,$$

$$V(S_n) = n\sigma^2 ,$$

$$E(A_n) = \mu ,$$

$$V(A_n) = \frac{\sigma^2}{n} .$$

Variance

Example

- \bullet Let T denote the number of trials until the first success in a Bernoulli trials process.
- What is the variance of T?

Continuous Random Variables

Continuous Random Variables

Expected Value

Definition. Let X be a real-valued random variable with density function f(x). The expected value $\mu = E(X)$ is defined by

$$\mu = E(X) = \int_{-\infty}^{+\infty} x f(x) \, dx \; ,$$

provided the integral

$$\int_{-\infty}^{+\infty} |x| f(x) \, dx$$

is finite.

Properties

 $\bullet~$ If $X~{\rm and}~Y~{\rm are}$ real-valued random variables and $c~{\rm is}$ any constant, then

$$E(X+Y) = E(X) + E(Y) ,$$

$$E(cX) = cE(X) .$$

• More generally, if X_1 , X_2 , ..., X_n are n real-valued random variables, and c_1 , c_2 , ..., c_n are n constants, then

$$E(c_1X_1 + c_2X_2 + \dots + c_nX_n) = c_1E(X_1) + c_2E(X_2) + \dots + c_nE(X_n).$$

Continuous Random Variables

Example

- Suppose Mr. and Mrs. Lockhorn agree to meet at the Hanover Inn between 5:00 and 6:00 P.M. on Tuesday.
- Suppose each arrives at a time between 5:00 and 6:00 chosen at random with uniform probability.
- Let Z be the random variable which describes the length of time that the first to arrive has to wait for the other.
- What is E(Z)?

Expectation of a Function of a Random Variable

Theorem. If X is a real-valued random variable and if $\phi : \mathbf{R} \to \mathbf{R}$ is a continuous real-valued function with domain [a, b], then

$$E(\phi(X)) = \int_{-\infty}^{+\infty} \phi(x) f_X(x) \, dx \; ,$$

provided the integral exists.

Expectation of the Product of Two Random Variables

Theorem. Let X and Y be independent real-valued continuous random variables with finite expected values. Then we have

 $E(XY) = E(X)E(Y) \; .$

Example

- Let Z = (X, Y) be a point chosen at random in the unit square.
- What is $E(X^2Y^2)$?

Variance

Definition. Let X be a real-valued random variable with density function f(x). The variance $\sigma^2 = V(X)$ is defined by

$$\sigma^2 = V(X) = E((X - \mu)^2)$$
.

Computation

Theorem. If X is a real-valued random variable with $E(X) = \mu$, then

$$\sigma^2 = \int_{-\infty}^{\infty} (x-\mu)^2 f(x) \, dx \; .$$

Properties of the variance

 $\bullet~{\rm If}~X$ is a real-valued random variable defined on Ω and c is any constant, then

$$V(cX) = c^2 V(X) ,$$

$$V(X+c) = V(X) .$$

• If X is a real-valued random variable with $E(X) = \mu$, then

$$V(X) = E(X^2) - \mu^2$$
.

 \bullet If X and Y are independent real-valued random variables on $\Omega,$ then

V(X+Y) = V(X) + V(Y) .