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Roulette: A Game of Chance

• To analyze Roulette, we make two
hypotheses about Roulette’s behavior. When
we spin the wheel, each of the 38 out comes
is...
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• To analyze Roulette, we make two
hypotheses about Roulette’s behavior. When
we spin the wheel, each of the 38 out comes
is...

• EQUALLY LIKELY
• Second, we imagine the outcomes of different
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Roulette: A Game of Chance

• To analyze Roulette, we make two
hypotheses about Roulette’s behavior. When
we spin the wheel, each of the 38 out comes
is...

• EQUALLY LIKELY
• Second, we imagine the outcomes of different

spins are

• INDEPENDENT.
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Roulette: The Fair Price

• Hence, in order to receive a dollar if a certain
bet occurs, call this bet X, the fair price is
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E(X) =
# Ways of Winning

# Outcomes

Roulette – p.3/14



Roulette: The Fair Price

• Hence, in order to receive a dollar if a certain
bet occurs, call this bet X, the fair price is

•

E(X) =
# Ways of Winning

# Outcomes
• In Roulette, you will always be

purchasing some combination of bets
in the from cX for such an X. Though
you will never be offered the fair price.
Why?
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Example Bet 1.

• Suppose for a price of 1 you are
offered the bet where you receive 2 if
the outcome is Red, and 0 otherwise.
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Example Bet 1.

• Suppose for a price of 1 you are
offered the bet where you receive 2 if
the outcome is Red, and 0 otherwise.

• Let X be 1 if Red arises and zero
otherwise, and note E(X) = 18/38.
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Example Bet 1.

• Suppose for a price of 1 you are
offered the bet where you receive 2 if
the outcome is Red, and 0 otherwise.

• Let X be 1 if Red arises and zero
otherwise, and note E(X) = 18/38.

• The bet we are offered is 2X and by
the FFMP this bet has a fair price of
E(2X) = 2E(X) = 36/38 = 18/19 < 1.
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Example Bet 2.

• Suppose for a price of 1 you are
offered the bet where you receive 36 if
the outcome is the single number 7,
and zero otherwise.
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Example Bet 2.

• Suppose for a price of 1 you are
offered the bet where you receive 36 if
the outcome is the single number 7,
and zero otherwise.

• Let Y be 1 if 7 occurs and zero otherwise,
and note E(Y ) = 1/38.
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Example Bet 2.

• Suppose for a price of 1 you are
offered the bet where you receive 36 if
the outcome is the single number 7,
and zero otherwise.

• Let Y be 1 if 7 occurs and zero otherwise,
and note E(Y ) = 1/38.

• Hence our bet 30X has a fair price of
E(36Y ) = 36E(Y ) = 36/38 = 18/19 < 1.
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The Bets

• Do you see a pattern?
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The Bets

• Do you see a pattern?
•

The Bet What You Receive Offered Price Fair Price

Single Number 1 + 35 1 18/19

2 Numbers 1 + 17 1 18/19

3 Numbers 1 + 11 1 18/19

4 Numbers 1 + 8 1 18/19

6 Numbers 1 + 5 1 18/19

12 Numbers 1 + 2 1 18/19

18 Numbers 1 + 1 1 18/19
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Expected Value is Constant!

• What does change?
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Expected Value is Constant!

• What does change?

• We wish to measure how far away from from

our expected value we expect to be. A good

choice of how to do this is the expect value of

(X − E(X))2. In other words, we define the

variance to be

V (X) = E((X − E(X))2).
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Variance of our examples

• From the FFMT V (X) = E((X − E(X))2)

equals

E(X2)−2E(X)E(X)+E(X)2 = E(X2)−E(X)2
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Variance of our examples

• From the FFMT V (X) = E((X − E(X))2)

equals

E(X2)−2E(X)E(X)+E(X)2 = E(X2)−E(X)2

• For our 2X bet,
V (2X) = E(4X2) − E(2X)2 = 4(E(X2) − E(X)2) = 4(E(X) − E(X)2 and by
plugging in our E(X) = 18/38 equals 4(18/38 − (18/38)2) = .997
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Variance of our examples

• From the FFMT V (X) = E((X − E(X))2)

equals

E(X2)−2E(X)E(X)+E(X)2 = E(X2)−E(X)2

• For our 2X bet,
V (2X) = E(4X2) − E(2X)2 = 4(E(X2) − E(X)2) = 4(E(X) − E(X)2 and by
plugging in our E(X) = 18/38 equals 4(18/38 − (18/38)2) = .997

• Similarly, for our 30Y bet,
V (30Y ) = 362(E(Y 2) − E(Y )2) = 1296(E(Y ) − E(Y )2) and by plugging in our
E(Y ) = 1/38 this equals 1296(1/32 − (1/32)2) = 33.2
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Standard Deviation

• But the variance scales funny. Namely,
if we mutliply X by a constant c then
by the FFMP V (cX) = c2V (X)
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Standard Deviation

• But the variance scales funny. Namely,
if we mutliply X by a constant c then
by the FFMP V (cX) = c2V (X)

• Hence it is tempting to take a square-root,
and
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Standard Deviation

• But the variance scales funny. Namely,
if we mutliply X by a constant c then
by the FFMP V (cX) = c2V (X)

• Hence it is tempting to take a square-root,
and

• we define the Standard Deviation as

Sd(X) =
√

V (X).
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Standard Deviations of our Bets

• The standard deviations of our bets
are:
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Standard Deviations of our Bets

• The standard deviations of our bets
are:

•

The Bet Fair Price What You Receive Var SDev

Single Number 18/19 36 33.21 5.76

2 Numbers 18/19 18 16.16 4.02

3 Numbers 18/19 12 10.47 3.24

4 Numbers 18/19 9 7.63 2.76

6 Numbers 18/19 6 4.79 2.19

12 Numbers 18/19 3 1.94 1.39

18 Numbers 18/19 2 .997 .999
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First Fundamental Theorem of Probability

• The FFTP is that if X and Y are

independent then

V (X + Y ) = V (X) + V (Y ).
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First Fundamental Theorem of Probability

• The FFTP is that if X and Y are

independent then

V (X + Y ) = V (X) + V (Y ).

• Sometimes this is called the

Pythagorean Theorem, namely

sd(X + Y ) =
√

sd(X)2 + Sd(Y )2
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Proof

By the FFMP

V (X + Y ) = E((X + Y )2) − (E(X + Y ))2

= E(X2 + Y 2 + 2XY ) − (E(X) + E(Y ))2

= E(X2) + E(Y 2) + 2E(XY ) − (E(X)2 + E(Y )2 + 2E(X)E(Y ))

= (E(X2) − E(X)2) + (E(Y 2) + E(Y )2) + 2(E(XY ) − E(X)E(Y ))

= V (X) + V (Y ) + 2(E(XY ) − E(X)E(Y ))
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Proof

By the FFMP

V (X + Y ) = E((X + Y )2) − (E(X + Y ))2

= E(X2 + Y 2 + 2XY ) − (E(X) + E(Y ))2

= E(X2) + E(Y 2) + 2E(XY ) − (E(X)2 + E(Y )2 + 2E(X)E(Y ))

= (E(X2) − E(X)2) + (E(Y 2) + E(Y )2) + 2(E(XY ) − E(X)E(Y ))

= V (X) + V (Y ) + 2(E(XY ) − E(X)E(Y ))

As we have seen, V (X) = E(X2) − E(X)2 and V (X) = E(Y 2) − E(Y )2. The last
term, E(XY ) − E(X)E(Y ), is providing a measurement of how dependent X and Y

are. In particular, by the SFMP

V (X + Y ) = V (X) + V (Y ) + 2(E(X)E(Y ) − E(X)E(Y )))

= V (X) + V (Y ) + 0
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What the Casino Sees

• Basically, the casino sees people making N independent bets for some big N .
From the casino’s view, each bet is nearly in the form −CXi (were C is determined
by the table limit) with (by the FFMP) E(−CXi) = −CE(Xi) = −C18/19 and (by
the FFTP) Sd(CXi) = CSd(Xi) < C5.76.
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What the Casino Sees

• Basically, the casino sees people making N independent bets for some big N .
From the casino’s view, each bet is nearly in the form −CXi (were C is determined
by the table limit) with (by the FFMP) E(−CXi) = −CE(Xi) = −C18/19 and (by
the FFTP) Sd(CXi) = CSd(Xi) < C5.76.

• Hence, at the end of the day, (by the FFMP) the casino expects to have lost

−CN(18/19) with standard deviation (by the FFTP) less than
√

NC5.76, and
charged CN dollars in payment.
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What the Casino Sees

• Basically, the casino sees people making N independent bets for some big N .
From the casino’s view, each bet is nearly in the form −CXi (were C is determined
by the table limit) with (by the FFMP) E(−CXi) = −CE(Xi) = −C18/19 and (by
the FFTP) Sd(CXi) = CSd(Xi) < C5.76.

• Hence, at the end of the day, (by the FFMP) the casino expects to have lost

−CN(18/19) with standard deviation (by the FFTP) less than
√

NC5.76, and
charged CN dollars in payment.

• Hence the casino has has CN(1/19) dollars with a standard deviation less than

of
√

NC5.76.
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We Like Sd(X)

• We standardize a random variable X via

X∗ =
X − E(X)

Sd(X)
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We Like Sd(X)

• We standardize a random variable X via

X∗ =
X − E(X)

Sd(X)

• The Central Limit Theorem: Suppose the Xi are
independent and bounded by some constant
C. Then for big enough N , (

∑

N

i=1 Xi)
∗

behaves like the standard normal.
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We Like Sd(X)

• We standardize a random variable X via

X∗ =
X − E(X)

Sd(X)

• The Central Limit Theorem: Suppose the Xi are
independent and bounded by some constant
C. Then for big enough N , (

∑

N

i=1 Xi)
∗

behaves like the standard normal.
• Exercise: Pick a reasonable C and N and use

the central limit theorem to estimate the
chance that the casino doe not make money
from Roulette!
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