Roulette

Math 5 Crew

Department of Mathematics
Dartmouth College

Roulette: A Game of Chance

- To analyze Roulette, we make two hypotheses about Roulette's behavior. When we spin the wheel, each of the 38 out comes is...

Roulette: A Game of Chance

- To analyze Roulette, we make two hypotheses about Roulette's behavior. When we spin the wheel, each of the 38 out comes is...
- EQUALLY LIKELY

Roulette: A Game of Chance

- To analyze Roulette, we make two hypotheses about Roulette's behavior. When we spin the wheel, each of the 38 out comes is...
- EQUALLY LIKELY
- Second, we imagine the outcomes of different spins are

Roulette: A Game of Chance

- To analyze Roulette, we make two hypotheses about Roulette's behavior. When we spin the wheel, each of the 38 out comes is...
- EQUALLY LIKELY
- Second, we imagine the outcomes of different spins are
- INDEPENDENT.

Roulette: The Fair Price

- Hence, in order to receive a dollar if a certain bet occurs, call this bet X, the fair price is

Roulette: The Fair Price

- Hence, in order to receive a dollar if a certain bet occurs, call this bet X, the fair price is

$$
E(X)=\frac{\# \text { Ways of Winning }}{\# \text { Outcomes }}
$$

Roulette: The Fair Price

- Hence, in order to receive a dollar if a certain bet occurs, call this bet X, the fair price is

$$
E(X)=\frac{\# \text { Ways of Winning }}{\# \text { Outcomes }}
$$

- In Roulette, you will always be purchasing some combination of bets in the from $c X$ for such an X. Though you will never be offered the fair price. Why?

Example Bet 1.

- Suppose for a price of 1 you are offered the bet where you receive 2 if the outcome is Red, and 0 otherwise.

Example Bet 1.

- Suppose for a price of 1 you are offered the bet where you receive 2 if the outcome is Red, and 0 otherwise.
- Let X be 1 if Red arises and zero otherwise, and note $E(X)=18 / 38$.

Example Bet 1.

- Suppose for a price of 1 you are offered the bet where you receive 2 if the outcome is Red, and 0 otherwise.
- Let X be 1 if Red arises and zero otherwise, and note $E(X)=18 / 38$.
- The bet we are offered is $2 X$ and by the FFMP this bet has a fair price of $E(2 X)=2 E(X)=36 / 38=18 / 19<1$.

Example Bet 2.

- Suppose for a price of 1 you are offered the bet where you receive 36 if the outcome is the single number 7 , and zero otherwise.

Example Bet 2.

- Suppose for a price of 1 you are offered the bet where you receive 36 if the outcome is the single number 7 , and zero otherwise.
- Let Y be 1 if 7 occurs and zero otherwise, and note $E(Y)=1 / 38$.

Example Bet 2.

- Suppose for a price of 1 you are offered the bet where you receive 36 if the outcome is the single number 7 , and zero otherwise.
- Let Y be 1 if 7 occurs and zero otherwise, and note $E(Y)=1 / 38$.
- Hence our bet $30 X$ has a fair price of $E(36 Y)=36 E(Y)=36 / 38=18 / 19<1$.

The Bets

- Do you see a pattern?

The Bets

- Do you see a pattern?

The Bet	What You Receive	Offered Price	Fair Price
Single Number	$1+35$	1	$18 / 19$
2 Numbers	$1+17$	1	$18 / 19$
3 Numbers	$1+11$	1	$18 / 19$
4 Numbers	$1+8$	1	$18 / 19$
6 Numbers	$1+5$	1	$18 / 19$
12 Numbers	$1+2$	1	$18 / 19$
18 Numbers	$1+1$	1	$18 / 19$

Expected Value is Constant!

- What does change?

Expected Value is Constant!

- What does change?
- We wish to measure how far away from from our expected value we expect to be. A good choice of how to do this is the expect value of $(X-E(X))^{2}$. In other words, we define the variance to be

$$
V(X)=E\left((X-E(X))^{2}\right) .
$$

Variance of our examples

- From the FFMT $V(X)=E\left((X-E(X))^{2}\right)$ equals
$E\left(X^{2}\right)-2 E(X) E(X)+E(X)^{2}=E\left(X^{2}\right)-E(X)^{2}$

Variance of our examples

- From the FFMT $V(X)=E\left((X-E(X))^{2}\right)$ equals
$E\left(X^{2}\right)-2 E(X) E(X)+E(X)^{2}=E\left(X^{2}\right)-E(X)^{2}$
- For our $2 X$ bet,
$V(2 X)=E\left(4 X^{2}\right)-E(2 X)^{2}=4\left(E\left(X^{2}\right)-E(X)^{2}\right)=4\left(E(X)-E(X)^{2}\right.$ and by plugging in our $E(X)=18 / 38$ equals $4\left(18 / 38-(18 / 38)^{2}\right)=.997$

Variance of our examples

- From the FFMT $V(X)=E\left((X-E(X))^{2}\right)$ equals
$E\left(X^{2}\right)-2 E(X) E(X)+E(X)^{2}=E\left(X^{2}\right)-E(X)^{2}$
- For our $2 X$ bet,
$V(2 X)=E\left(4 X^{2}\right)-E(2 X)^{2}=4\left(E\left(X^{2}\right)-E(X)^{2}\right)=4\left(E(X)-E(X)^{2}\right.$ and by plugging in our $E(X)=18 / 38$ equals $4\left(18 / 38-(18 / 38)^{2}\right)=.997$
- Similarly, for our $30 Y$ bet, $V(30 Y)=36^{2}\left(E\left(Y^{2}\right)-E(Y)^{2}\right)=1296\left(E(Y)-E(Y)^{2}\right)$ and by plugging in our $E(Y)=1 / 38$ this equals $1296\left(1 / 32-(1 / 32)^{2}\right)=33.2$
- But the variance scales funny. Namely, if we mutliply X by a constant c then by the FFMP $V(c X)=c^{2} V(X)$
- But the variance scales funny. Namely, if we mutliply X by a constant c then by the FFMP $V(c X)=c^{2} V(X)$
- Hence it is tempting to take a square-root, and
- But the variance scales funny. Namely, if we mutliply X by a constant c then by the FFMP $V(c X)=c^{2} V(X)$
- Hence it is tempting to take a square-root, and
- we define the Standard Deviation as

$$
S d(X)=\sqrt{V(X)}
$$

Standard Deviations of our Bets

- The standard deviations of our bets are:

Standard Deviations of our Bets

- The standard deviations of our bets are:

The Bet	Fair Price	What You Receive	Var	SDev
Single Number	$18 / 19$	36	33.21	5.76
2 Numbers	$18 / 19$	18	16.16	4.02
3 Numbers	$18 / 19$	12	10.47	3.24
4 Numbers	$18 / 19$	9	7.63	2.76
6 Numbers	$18 / 19$	6	4.79	2.19
12 Numbers	$18 / 19$	3	1.94	1.39
18 Numbers	$18 / 19$	2	.997	.999

First Fundamental Theorem of Probability

- The FFTP is that if X and Y are independent then

$$
V(X+Y)=V(X)+V(Y)
$$

First Fundamental Theorem of Probability

- The FFTP is that if X and Y are independent then

$$
V(X+Y)=V(X)+V(Y)
$$

- Sometimes this is called the Pythagorean Theorem, namely

$$
s d(X+Y)=\sqrt{s d(X)^{2}+S d(Y)^{2}}
$$

Proof

By the FFMP

$$
\begin{gathered}
V(X+Y)=E\left((X+Y)^{2}\right)-(E(X+Y))^{2} \\
=E\left(X^{2}+Y^{2}+2 X Y\right)-(E(X)+E(Y))^{2} \\
=E\left(X^{2}\right)+E\left(Y^{2}\right)+2 E(X Y)-\left(E(X)^{2}+E(Y)^{2}+2 E(X) E(Y)\right) \\
=\left(E\left(X^{2}\right)-E(X)^{2}\right)+\left(E\left(Y^{2}\right)+E(Y)^{2}\right)+2(E(X Y)-E(X) E(Y)) \\
=V(X)+V(Y)+2(E(X Y)-E(X) E(Y))
\end{gathered}
$$

Proof

By the FFMP

$$
\begin{gathered}
V(X+Y)=E\left((X+Y)^{2}\right)-(E(X+Y))^{2} \\
=E\left(X^{2}+Y^{2}+2 X Y\right)-(E(X)+E(Y))^{2} \\
=E\left(X^{2}\right)+E\left(Y^{2}\right)+2 E(X Y)-\left(E(X)^{2}+E(Y)^{2}+2 E(X) E(Y)\right) \\
=\left(E\left(X^{2}\right)-E(X)^{2}\right)+\left(E\left(Y^{2}\right)+E(Y)^{2}\right)+2(E(X Y)-E(X) E(Y)) \\
=V(X)+V(Y)+2(E(X Y)-E(X) E(Y))
\end{gathered}
$$

As we have seen, $V(X)=E\left(X^{2}\right)-E(X)^{2}$ and $V(X)=E\left(Y^{2}\right)-E(Y)^{2}$. The last term, $E(X Y)-E(X) E(Y)$, is providing a measurement of how dependent X and Y are. In particular, by the SFMP

$$
\begin{aligned}
V(X+Y)=V(X) & +V(Y)+2(E(X) E(Y)-E(X) E(Y))) \\
& =V(X)+V(Y)+0
\end{aligned}
$$

What the Casino Sees

- Basically, the casino sees people making N independent bets for some big N. From the casino's view, each bet is nearly in the form $-C X_{i}$ (were C is determined by the table limit) with (by the FFMP) $E\left(-C X_{i}\right)=-C E\left(X_{i}\right)=-C 18 / 19$ and (by the FFTP) $S d\left(C X_{i}\right)=C S d\left(X_{i}\right)<C 5.76$.

What the Casino Sees

- Basically, the casino sees people making N independent bets for some big N. From the casino's view, each bet is nearly in the form $-C X_{i}$ (were C is determined by the table limit) with (by the FFMP) $E\left(-C X_{i}\right)=-C E\left(X_{i}\right)=-C 18 / 19$ and (by the FFTP) $S d\left(C X_{i}\right)=C S d\left(X_{i}\right)<C 5.76$.
- Hence, at the end of the day, (by the FFMP) the casino expects to have lost $-C N(18 / 19)$ with standard deviation (by the FFTP) less than $\sqrt{N} C 5.76$, and charged $C N$ dollars in payment.

What the Casino Sees

- Basically, the casino sees people making N independent bets for some big N. From the casino's view, each bet is nearly in the form $-C X_{i}$ (were C is determined by the table limit) with (by the FFMP) $E\left(-C X_{i}\right)=-C E\left(X_{i}\right)=-C 18 / 19$ and (by the FFTP) $S d\left(C X_{i}\right)=C S d\left(X_{i}\right)<C 5.76$.
- Hence, at the end of the day, (by the FFMP) the casino expects to have lost $-C N(18 / 19)$ with standard deviation (by the FFTP) less than $\sqrt{N} C 5.76$, and charged $C N$ dollars in payment.
- Hence the casino has has $C N(1 / 19)$ dollars with a standard deviation less than of $\sqrt{N} C 5.76$.

We Like $S d(X)$

- We standardize a random variable X via

$$
X^{*}=\frac{X-E(X)}{S d(X)}
$$

We Like $S d(X)$

- We standardize a random variable X via

$$
X^{*}=\frac{X-E(X)}{S d(X)}
$$

- The Central Limit Theorem: Suppose the X_{i} are independent and bounded by some constant C. Then for big enough $N,\left(\sum_{i=1}^{N} X_{i}\right)^{*}$ behaves like the standard normal.

We Like $S d(X)$

- We standardize a random variable X via

$$
X^{*}=\frac{X-E(X)}{S d(X)}
$$

- The Central Limit Theorem: Suppose the X_{i} are independent and bounded by some constant
C. Then for big enough $N,\left(\sum_{i=1}^{N} X_{i}\right)^{*}$ behaves like the standard normal.
- Exercise: Pick a reasonable C and N and use the central limit theorem to estimate the chance that the casino doe not make money from Roulette!

