Probability From Fair Price

Math 5 Crew

Department of Mathematics
Dartmouth College

Review

- Last time we looked at several bets: the Bush bet, the Lord of the Rings Bet, and combinations of these bets.

Review

- Last time we looked at several bets: the Bush bet, the Lord of the Rings Bet, and combinations of these bets.
- In the process, we learned the FFMP

$$
E(c X+d Y)=c E(X)+d E(Y)
$$

Review

- Last time we looked at several bets: the Bush bet, the Lord of the Rings Bet, and combinations of these bets.
- In the process, we learned the FFMP

$$
E(c X+d Y)=c E(X)+d E(Y)
$$

- and (provided X and Y are independent!) the SFMP

$$
E(X Y)=E(X) E(Y)
$$

Probabilities in a Market

- If a random variable Z has the property that it is one if an event U occurs and zero otherwise,

Probabilities in a Market

- If a random variable Z has the property that it is one if an event U occurs and zero otherwise,
- then we say the Probability that U occurs is $E(Z)$ and use the notation $P(E)=E(Z)$.

Probabilities in a Market

- If a random variable Z has the property that it is one if an event U occurs and zero otherwise,
- then we say the Probability that U occurs is $E(Z)$ and use the notation $P(E)=E(Z)$.
- Notice, from this view P (Bush is the next president) $=E(X / 100)=0.6465$, while the $P($ Lord of the Rings wins Best Picture $)=0.8385$.

Discussion Question

- Let Z be the bet which is one if at least one pair of you mothers share a birthday (month and day) and zero otherwise. For what price would you be willing to sell Z and for what price would you be willing to buy Z ?

Discussion Question

- Let Z be the bet which is one if at least one pair of you mothers share a birthday (month and day) and zero otherwise. For what price would you be willing to sell Z and for what price would you be willing to buy Z ?
- What do you feel would be Z 's Fair Price in an efficient market?

Discussion Question

- Let Z be the bet which is one if at least one pair of you mothers share a birthday (month and day) and zero otherwise. For what price would you be willing to sell Z and for what price would you be willing to buy Z ?
- What do you feel would be Z 's Fair Price in an efficient market?
- How about the bet W that at least 2 pairs of your mothers share the same birthday?

A Question

- Let U be the event that Bush is the next president and that Lord of the Rings wins Best Picture. What is $P(U)$?

A Question

- Let U be the event that Bush is the next president and that Lord of the Rings wins Best Picture. What is $P(U)$?
- We need to find a bet which is 1 if they both win and zero otherwise. Notice, $Z=\frac{X}{100} \frac{Y}{100}$ has this property.

A Question

- Let U be the event that Bush is the next president and that Lord of the Rings wins Best Picture. What is $P(U)$?
- We need to find a bet which is 1 if they both win and zero otherwise. Notice, $Z=\frac{X}{100} \frac{Y}{100}$ has this property.
- Hence using the FFMP and SFMP $P(E)$ equals

$$
E(Z)=E\left(\frac{X}{100} \frac{Y}{100}\right)=\frac{1}{10000} E(X Y)=\frac{5420.90}{10000}=0.542 .
$$

Multiplication Rule

- If event U_{1} and U_{2} are independent, then

Multiplication Rule

- If event U_{1} and U_{2} are independent, then
$P\left(U_{1}\right.$ and $\left.U_{2}\right)=P\left(U_{1}\right) P\left(U_{2}\right)$

Multiplication Rule

- If event U_{1} and U_{2} are independent, then

$$
P\left(U_{1} \text { and } U_{2}\right)=P\left(U_{1}\right) P\left(U_{2}\right)
$$

- For our U

$$
P(U)=(0.6465)(0.8385)=0.5420
$$

A Question

- Let V be the event that Bush is the next president OR Lord of the Rings wins Best Picture. What is $P(V)$?

A Question

- Let V be the event that Bush is the next president OR Lord of the Rings wins Best Picture. What is $P(V)$?
- We need to fi nd a bet which is 1 if V occurs and zero otherwise. The following bet has this property

$$
Z=\frac{X}{100}+\frac{Y}{100}-\frac{X}{100} \frac{Y}{100}
$$

A Question

- Let V be the event that Bush is the next president OR Lord of the Rings wins Best Picture. What is $P(V)$?

- We need to fi nd a bet which is 1 if V occurs and zero otherwise. The following bet has this property

$$
Z=\frac{X}{100}+\frac{Y}{100}-\frac{X}{100} \frac{Y}{100}
$$

- Hence using the fi rst and second fundamental mysteries $P(V)$ equals

$$
\begin{gathered}
E(Z)=E\left(\frac{X}{100}+\frac{Y}{100}-\frac{X}{100} \frac{Y}{100}\right) \\
=\frac{E(X)}{100}+\frac{E(Y)}{100}-\frac{E(X Y)}{10000} \\
=0.6465+0.8385-0.5420=0.9430
\end{gathered}
$$

The Addition Rule

- For any events U_{1} and U_{2}

$$
P\left(U_{1} \text { or } U_{2}\right)=P\left(U_{1}\right)+P\left(U_{2}\right)-P\left(U_{1} \text { and } U_{2}\right)
$$

The Addition Rule

- For any events U_{1} and U_{2}

$$
P\left(U_{1} \text { or } U_{2}\right)=P\left(U_{1}\right)+P\left(U_{2}\right)-P\left(U_{1} \text { and } U_{2}\right)
$$

- and if U_{1} and U_{2} are independent

$$
P\left(U_{1} \text { or } U_{2}\right)=P\left(U_{1}\right)+P\left(U_{2}\right)-P\left(U_{1}\right) P\left(U_{2}\right)
$$

The Addition Rule

- For any events U_{1} and U_{2}

$$
P\left(U_{1} \text { or } U_{2}\right)=P\left(U_{1}\right)+P\left(U_{2}\right)-P\left(U_{1} \text { and } U_{2}\right)
$$

- and if U_{1} and U_{2} are independent

$$
P\left(U_{1} \text { or } U_{2}\right)=P\left(U_{1}\right)+P\left(U_{2}\right)-P\left(U_{1}\right) P\left(U_{2}\right)
$$

- For our V

$$
P(V)=0.6465+0.8385-(0.6465)(0.8385)=0.9430
$$

The Complement Rule

- For any event U, the event that U does not occur is called is called U 's complement and denoted as U^{c}.

The Complement Rule

- For any event U, the event that U does not occur is called is called U 's complement and denoted as U^{c}.
- We have the following Complement Rule

$$
P\left(U^{c}\right)=1-P(U)
$$

The Complement Rule

- For any event U, the event that U does not occur is called is called U 's complement and denoted as U^{c}.
- We have the following Complement Rule

$$
P\left(U^{c}\right)=1-P(U)
$$

- For example, the probability that George Bush fails to be the next president is

$$
P\left(U^{c}\right)=1-P(U)=1-0.6465=0.3535
$$

Recall the Equally Likely Rule

- If a bunch of N outcomes are equally likely, then (by arbitrage) the market will assign an event consisting of K of these outcomes the probability...

Recall the Equally Likely Rule

- If a bunch of N outcomes are equally likely, then (by arbitrage) the market will assign an event consisting of K of these outcomes the probability...

$$
P\left(\frac{K}{N}\right.
$$

Recall the Equally Likely Rule

- If a bunch of N outcomes are equally likely, then (by arbitrage) the market will assign an event consisting of K of these outcomes the probability...

$$
P\left(\frac{K}{N}\right.
$$

- We will now use this fact to analyze our Birthday Bet's Fair Price.

