Math 3 Winter 2003
Practice Problems for Exam II

1. Short answer problems.
(a) A certain mushroom changes shape as it grows, so its weight W (measured in grams) is a complicated function of its height h (measured in centimeters.) If you know that

$$
\int_{3}^{5} \frac{d W}{d h} d h=2
$$

then what can you conclude?
i. An average mushroom between 3 and 5 centimeters tall weights 2 grams.
ii. A 5 centmeter tall mushroom weighs 2 grams more than a 3 centimeter tall mushroom.
iii. A 5 centimeter tall mushroom weighs twice as much as a 3 centimeter tall mushroom.
iv. A mushrooom between 3 and 5 centimeters in height that grows a small amount Δh centimeters taller will gain about $2 \Delta h$ grams in weight.
(b)

$$
F(x)=\int_{-x}^{x} \cos ^{2}(t) d t
$$

What is the derivative $F^{\prime}(x)$?
(c) TRUE or FALSE?
i. On any interval on which the function f is differentiable,

$$
\int f^{\prime}(x) d x=f(x)+C
$$

ii. The antiderivative of the velocity function of a moving particle gives you the particle's acceleration.
iii. If $f(x)=f(-x)$ for all x, and f is continuous everywhere, then for all a,

$$
\int_{-a}^{a} f(x) d x=0
$$

2. (a) The sum

$$
1^{2} \Delta x+3^{2} \Delta x+5^{2} \Delta x+7^{2} \Delta x+9^{2} \Delta x
$$

is the fifth left-endpoint Riemann sum (L_{5}) approximating

$$
\int_{a}^{b} x^{2} d x
$$

Provide the following numbers:

$$
\begin{gathered}
a= \\
b= \\
\Delta x=
\end{gathered}
$$

(b) If f is continuous and

$$
\begin{aligned}
\int_{0}^{\sqrt{3}} f(x) d x & =-1 \\
\int_{0}^{3} f(x) d x & =1 \\
\int_{0}^{9} f(x) d x & =4
\end{aligned}
$$

find

$$
\int_{0}^{3} x f\left(x^{2}\right) d x .
$$

(You may not need to use all the given information.)
(c) What is

$$
\int \frac{1}{\cos ^{2}(x)} d x ?
$$

3. (a) Evaluate

$$
\int_{0}^{\pi} \sin ^{3} x d x
$$

(b) Evaluate

$$
\int_{-1}^{1}(x+2) \sqrt{1-x^{2}} d x
$$

by writing it as a sum of integrals and interpreting one of them as an area.
4. A solid object has a base that is a right triangle. One leg has length $2^{\prime \prime}$ and the other has length $4^{\prime \prime}$. When it is sliced vertically with slices parallel to the $2^{\prime \prime}$ leg of the base, the cross-sections are half-discs. Find its volume.
5. A covered aquarium has a rectangular base, and must be twice as tall as the width of the base. If material for the top of the aquarium costs $\$ 5$ per square foot, material for the bottom costs $\$ 8$ per square foot, and glass for the sides costs $\$ 2$ per square foot, find the volume of the largest aquarium that can be built for $\$ 100$ or less.

