Math 3 Winter 2003
Practice for Exam I

1. (a) i. Complete the statement:

The Intermediate Value Theorem tells us that if f is continuous on $[a, b]$, and

$$
f(a)=A<C<B=f(b)
$$

then:
ii. Complete the statement:

If f is a continuous function on $(-\infty, \infty), f^{\prime}(x)<0$ for every $x<0$, and $f^{\prime}(x)>0$ for every $x>0$, then at the point $x=0$, f must have:
(b) TRUE OR FALSE
i. It is possible to have a function $f(x)$ that is continuous and differentiable on $(-\infty, \infty)$, such that $f^{\prime}(x) \geq 1$ for every x, and $\lim _{x \rightarrow \infty} f(x)=0$.
ii. It is possible to have a continuous function on $(0,1)$ that has a maximum value on $(0,1)$.
iii. Since $\sin 0=0$ and $\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$, the Mean Value Theorem guarantees us that for some c between 0 and $\frac{\pi}{6}$,

$$
\cos c=\frac{3}{\pi} .
$$

iv. $\lim _{h \rightarrow 0} \frac{\tan \left(\frac{\pi}{12}+h\right)-\tan \left(\frac{\pi}{12}\right)}{h}=\sec ^{2}\left(\frac{\pi}{12}\right)$.
2. (a) Find the slope of the line tangent to $x^{2}+2 x y-y^{2}+x=2$ at the point (1,2).
(b) The volume of a cone is given by $V=\frac{\pi r^{2} h}{3}$, where r is the radius and h is the height.
i. Find the rate of change of the volume with respect to height if the radius is constant and equals 3 cm .
ii. find the rate of change of the volume with respect to radius if the height is constant and equals 10 cm .
3. An amount of gas having mass 1 gram is enclosed in a spherical balloon of radius r. As the temperature rises, the gas expands, so r increases.
The volume of gas

$$
V=\frac{4}{3} \pi r^{3}
$$

also increases.
The density of the gas

$$
D=\frac{\text { mass }}{\text { volume }}
$$

decreases.
When the radius r of the balloon is 1 meter, r is increasing at a rate of .1 meters per second.

How fast is V increasing?

How fast is D decreasing?

4. (a) Here is the graph of a function $f(x)$.
i. At which values of x is f discontinuous?
ii. At which values of x does f have removable discontinuities?
iii. At which values of x does f have vertical asymptotes?
iv. At which values of x is f not differentiable?
v. At which values of x does the derivative of f, f^{\prime}, have removable discontinuities?
vi. At which values of x does the derivative of f, f^{\prime}, have vertical asymptotes?
(b) Picture (A.) is the graph of a second derivative $f^{\prime \prime}(x)$. One of the other pictures is the graph of f. Which one? How can you tell?
A.

C.

E.

B.

D.

5.

$$
f(x)=\sqrt{\frac{x-1}{x+1}}
$$

(a) Where is $f(x)$ undefined? (Don't forget the square root of a negative number is undefined.)
(b) Find:

$$
\begin{gathered}
\lim _{x \rightarrow(-1)^{-}} f(x) \\
\lim _{x \rightarrow(1)^{+}} f(x) \\
\lim _{x \rightarrow \infty} f(x) \\
\lim _{x \rightarrow-\infty} f(x)
\end{gathered}
$$

(c) Find the derivative $f^{\prime}(x)$
(d) Find

$$
\lim _{x \rightarrow(1)^{+}} f^{\prime}(x)
$$

(e) Sketch the graph of f, taking all this into account.

