Math 31 Fall 2005

Topics in Algebra

Take-Home Midterm Exam
Due: Friday October 28 during class.

Your Name (Please Print): \qquad

Instructions: This is an open book, open notes exam. You may use any printed material, including your class notes, but you cannot consult with your classmates or other humans. You should justify all of your answers to receive full credit.

There will be a Question and Answer session on Thursday, October 27 during the x-hour. During this time, you are welcome to come to class to ask any general questions. You're also welcome to come just to listen to the questions your classmates ask and what answers I give. I will also be available during my normal office hour times; however, I will save most detailed answers that may pertain to a specific problem for the Thursday session.

The Honor Principle requires that you neither give nor receive any aid on this exam.

1. Consider the following sets:

$$
\begin{aligned}
& G=\left\{\left.\left[\begin{array}{ll}
a & b \\
0 & d
\end{array}\right] \right\rvert\, a, b, d \in \mathbb{R} \text { and } a d \neq 0\right\} \\
& H=\left\{\left.\left[\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right] \right\rvert\, x \in \mathbb{R}\right\}
\end{aligned}
$$

Then G is a group under the operation of matrix multiplication.
(a) Prove that H is a subgroup of G (8 points).
(b) Is $H \unlhd G$? Justify your answer (4 points).
2. Let G be a (not necessarily cyclic) group of order 44 and let $a \in G$ be an element such that $\left|a^{5}\right|=11$. Prove that $|a|=11$. (12 points)
3. Let G be a group and $a, b \in G$ such that $\left|a^{3}\right|=\left|b^{3}\right|$. Does it follow that $|a|=|b|$? If yes, provide a proof. If no, give an example supporting your answer. (8 points)
4. Consider the following two elements of S_{6} :

$$
\begin{aligned}
& \alpha=\left[\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 4 & 1 & 3 & 5 & 6
\end{array}\right] \\
& \beta
\end{aligned}=\left[\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 5 & 6 & 2 & 1 & 3
\end{array}\right]
$$

(a) Write $\alpha \beta$ as a product of disjoint cycles. (4 points)
(b) What is $|\alpha \beta|$? How do you know? (4 points)
(c) Is $\alpha \beta$ an even or odd permutation? How do you know? (4 points)
(d) What permutation is $(\alpha \beta)^{-1}$? How do you know? (4 points)
5. Suppose G is a group of order 77 .
(a) What are the possible orders for elements of G ? (4 points)
(b) Without using the general version of Cauchy's Theorem, show that G must have an element of order 7. (6 points)
(c) Suppose that G is Abelian. Prove that G is cyclic. (6 points)
6. Consider the following function:

$$
\begin{aligned}
\varphi: \mathbb{R} \oplus \mathbb{R} & \mapsto \mathbb{R} \\
(x, y) & \mapsto x+y
\end{aligned}
$$

Show that φ is a group homomorphism that is onto. (12 points)
7. Let G be a (not necessarily Abelian) group of order 108 and let $\varphi: G \mapsto \mathbb{Z}_{18}$ be a surjective homomorphism. Prove that G has a normal subgroup of order 6. (12 points)

Extra Credit: G can be shown to have normal subgroups of other orders as well. List as many orders of normal subgroups of G as you can be sure of. (3 points)
8. Let G be a non-Abelian group of order p^{3} for some prime p. Assume that the center of G, $Z(G)$, is not trivial (ie., $Z(G) \neq\{e\}$). Prove that $|Z(G)|=p$. (12 points)

