Math 13 Spring 2011

Multivariable Calculus

Final Exam

Saturday June 4, 11:30-2:30 PM

Your name (please print): \qquad
Instructor (circle one): Sutton, Yang

Instructions: This is a closed book, closed notes exam. Use of calculators is not permitted. You must justify all of your answers on free-response questions to receive credit, unless instructed otherwise in a given problem. On the multiple choice questions, only the answer you mark on the scantron form will be counted and justifications can be minimal.

You have three hours to work on all 16 problems. Please do all your work in this exam booklet.
The Honor Principle requires that you neither give nor receive any aid on this exam.

FERPA Waiver: By my signature I relinquish my FERPA rights in the following context: My exam may be returned en masse with others present in the classroom. I acknowledge that I understand my score may be visible to others. If I choose not to relinquish my FERPA rights, I understand that I will have to present my student ID at my instructor's office to retrieve my exam.

Signature: \qquad

Math 13 Spring 2011

Your name (please print):

Problem	Points	Score
MC	40	
11	10	
12	10	
13	10	
14	10	
15	10	
16	10	
Total	$\mathbf{1 0 0}$	

MULTIPLE CHOICE QUESTIONS

(1)

$$
\int_{-2}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{2} x z d z d x d y=
$$

(a): 0
(b): π
(c): $-\pi$
(d): The integral cannot be evaluated.
(2) Does there exist a function $f(x, y, z)$ defined on all of \mathbb{R}^{3} with

$$
\nabla f(x, y, z)=\left\langle 2 x e^{x^{2}}, z \sin \left(y^{2}\right), z^{1234}\right\rangle ?
$$

(a): Yes, such a function does exist.
(b): No, such a function does not exist because $\nabla \times \nabla f \neq \mathbf{0}$.
(c): No, such a function does not exist because $\nabla f \neq \mathbf{0}$.
(d): No, such a function does not exist because $\nabla \cdot \nabla f \neq 0$.
(3) Let $\mathbf{F}=\left\langle e^{y z}, \sin \left(x z^{2}\right), z^{1234}\right\rangle$. Does there exist a vector field \mathbf{G} defined on all of \mathbb{R}^{3} with $\mathbf{F}=\nabla \times \mathbf{G}$?
(a): No, because $\nabla \times \mathbf{F} \neq \mathbf{0}$.
(b): Yes, because $\nabla \cdot \mathbf{F}=0$.
(c): No, because $\mathbf{F}(0,0,0) \neq \mathbf{0}$.
(d): No, because $\nabla \cdot \mathbf{F} \neq 0$.
(4) Let $f(x, y, z)=x+y^{2}+z^{3}$. Then, at the point $(0,1,1)$ the function f decreases fastest in the direction of
(a): $\langle-1,-1,-1\rangle$
(b): $\langle-1,-2,-3\rangle$
(c): $\langle 1,2,3\rangle$
(d): $\langle 1,0,1\rangle$
(5) The arclength of the curve $\mathbf{r}(t)=\left\langle 7 \sqrt{2} t, e^{-7 t}, e^{7 t}\right\rangle, 0 \leq t \leq 1$ is equal to:
(a): $e^{7}-e^{-7}$
(b): $e-e^{-1}$
(c): 12
(d): π
(6) Let S be the part of the surface $z=3 x^{2}+3 y^{2}$ below the plane $z=27$ oriented with the downward pointing unit normal vector. If $\mathbf{F}=2 x^{2} \mathbf{i}+3 \cos (z) \mathbf{j}+e^{10(x+z)} \mathbf{k}$, then

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=
$$

(a): $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is parametrized by $\sigma(t)=(3 \cos (-t), 3 \sin (-t), 27)$, $0 \leq t \leq 2 \pi$.
(b): $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is parametrized by $\sigma(t)=(3 \cos (t), 3 \sin (t), 27)$, $0 \leq t \leq 2 \pi$.
(c): $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is parametrized by $\sigma(t)=(\cos (-t), \sin (-t), 0)$, $0 \leq t \leq 2 \pi$.
(d): $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is parametrized by $\sigma(t)=\left(\cos ^{2}(t), \sin ^{2}(-t), 0\right)$, $0 \leq t \leq 2 \pi$.
(7) Find the surface area of S, where S is the portion of the sphere of radius 3 centered at the origin which is inside the cylinder $x^{2}+y^{2}=5$.
(a): 6π
(b): 12π
(c): 18π
(d): 24π
(8) Let C be the unit circle centered at the origin of the $x y$-plane oriented counter-clockwise and $\mathbf{F}=\left\langle-\frac{y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle$. Then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=
$$

(a): 0
(b): -2π
(c): 2π
(d): none of the above
(9) Let C be the boundary of the rectangle defined by $-1 \leq x \leq$ $1,-1 \leq y \leq 2$, oriented clockwise. Then

$$
\int_{C} x^{3} d x+(x+\sin y) d y=
$$

(a): 6
(b): -6
(c): 2
(d): -2
(10) Which of the following is an equation of the plane tangent to the surface $x^{2}+y^{2}-3 z=2$ at the point $(-2,-4,6)$?
(a): $4 x+8 y+3 z=0$
(b): $-2 x-4 y+6 z-2=0$
(c): $4 x+8 y+3 z+22=0$
(d): $x+y+z=0$

NON-MULTIPLE CHOICE QUESTIONS

(11) Let S be the surface $z=\sqrt{x^{2}+y^{2}}, 0 \leq x^{2}+y^{2} \leq 4$, with upwards pointing orientation. Let $\mathbf{F}=\langle y,-x, 1\rangle$.
(a) What is the surface area of S ?
(b) Let \mathbf{n} be the unit normal vector giving the orientation of S described above. For every point (x, y, z) on S, calculate $\mathbf{F} \cdot \mathbf{n}$ as a function of x, y, z.
(c) Calculate

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}
$$

(12) Let $\mathbf{F}=\left\langle x^{2}+\cos y, x z, e^{x y}\right\rangle$ and S be the surface of the tetrahedron bounded by the planes $x=0, y=0, z=0$ and $x+y+z=2$, with outwards pointing orientation. Evaluate

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S} .
$$

(13) Find

$$
\iiint_{H}\left(9-x^{2}-y^{2}\right) d V
$$

where H is the solid hemisphere $x^{2}+y^{2}+z^{2} \leq 9, z \geq 0$.
(14) Let S be the surface defined by the equation $z=\frac{1}{x y}$ lying over the part of the $x y$-plane satisfying the inequalities

$$
\frac{(x-3)^{2}}{4}+\frac{(y-4)^{2}}{4} \leq 1
$$

with upwards pointing orientation. Let $\mathbf{F}=\left\langle\frac{x}{z}, \frac{y}{z}, x y z\right\rangle$. Calculate

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}
$$

(15) Let S be the surface of the paraboloid $z=x^{2}+y^{2}$ for $0 \leq$ $z \leq 3$ oriented by the upward pointing normal, and consider the continuously differentiable vector field

$$
\mathbf{F}=\langle\cos (y+z)-2 y,-x \sin (y+z)+y, \cos (x+y)\rangle .
$$

One can compute that
curl $\mathbf{F}=\langle-\sin (x+y)+x \cos (y+z), \sin (x+y)-\sin (y+z), 2\rangle$.
Evaluate

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}
$$

(16) Let $\lfloor x\rfloor$ denote the greatest integer less than or equal to x; for instance, $\lfloor 2.5\rfloor=2,\lfloor\pi\rfloor=3,\lfloor 1\rfloor=1,\lfloor-.2\rfloor=-1$. Let D be the disc $x^{2}+y^{2} \leq 9$. Compute

$$
\iint_{D}\left\lfloor\sqrt{x^{2}+y^{2}}\right\rfloor d A
$$

(Hint: What are the level sets of the integrand?)

