TAKE HOME MIDTERM DUE THURSDAY, FEBRUARY 23

MATH 113, WINTER 06, INSTRUCTOR: MARIUS IONESCU

There are 10 problems for this midterm. Good luck and remeber that I root for you!
(1) Problem 9 on page 23.
(2) Let \mathcal{H} be a Hilbert space.If \mathcal{M} is a closed subspace of \mathcal{H} let $P_{\mathcal{M}}$ be the projection onto \mathcal{M}.
(a) $\mathcal{M}_{1} \subset \mathcal{M}_{2}$ if and only if $P_{\mathcal{M}_{1}} P_{\mathcal{M}_{2}}=P_{\mathcal{M}_{1}} \Longleftrightarrow P_{\mathcal{M}_{2}} P_{\mathcal{M}_{1}}=P_{\mathcal{M}_{1}}$.
(b) $\mathcal{M}_{1}=\mathcal{M}_{2}$ if and only if $P_{\mathcal{M}_{1}}=P_{\mathcal{M}_{2}}$.
(c) $\mathcal{M}_{1} \perp \mathcal{M}_{2}$ if and only $P_{\mathcal{M}_{1}} P_{\mathcal{M}_{2}}=0$.
(d) If $\mathcal{M}_{1}, \ldots, \mathcal{M}_{n}$ are closed subspaces of \mathcal{H}, then

$$
\mathcal{H}=\mathcal{M}_{1} \oplus \cdots \oplus \mathcal{M}_{n} \Longleftrightarrow P_{\mathcal{M}_{1}}+\cdots P_{\mathcal{M}_{n}}=I
$$

(3) Problem 4 on page 30.
(4) We say that two operators S and T in $\mathcal{B}(\mathcal{H})$ are unitarily equivalent if there is a unitary U such that $S=U T U *$.
(a) Show that unitary equivalence is an equivalence relation.
(b) Show that unitary equivalence preserves norm, self-adjointness, normality and unitarity.
(5) Suppose that P and Q are projections in $\mathcal{B}(\mathcal{H})$ which are unitarily equivalent via U (see the previous problem). Find an explicit unitary V in $\operatorname{Mat}_{2}(\mathcal{B}(\mathcal{H}))$ in terms of U such that

$$
V\left[\begin{array}{ll}
P & 0 \\
0 & 0
\end{array}\right] V^{*}=\left[\begin{array}{cc}
Q & 0 \\
0 & 0
\end{array}\right]
$$

(6) If \mathcal{H} is a complex Hilbert space and $A \in \mathcal{B}(\mathcal{H})$, we define the numerical radius of A as

$$
|\|A\||=\sup \{|\langle A x, x\rangle|: x \in \mathcal{H},\|x\| \leq 1\}
$$

Show that $|\|\cdot\||$ is a norm on $\mathcal{B}(\mathcal{H})$ which satisfies

$$
\frac{1}{2}\|A\| \leq|\|A\|| \leq\|A\|, \quad A \in \mathcal{B}(\mathcal{H})
$$

(Hint: you can use the polarization identity).
(7) Let $\mathcal{H}=\mathbb{C}^{2}$ and $E \in \mathcal{B}(\mathcal{H})$ be an idempotent. Let $P=P_{E \mathcal{H}}$ be the orthogonal projection onto the range of E. Prove that

$$
P=\left(E E^{*}+(1-E)^{*}(1-E)\right)^{-1} E E^{*}=\left(1+\left(E^{*}-E\right)^{*}\left(E^{*}-E\right)\right)^{-1} E E^{*}
$$

(8) For two projections P and Q in $\mathcal{B}(\mathcal{H})$ we define $P \leq Q$ if $P \mathcal{H} \subset Q \mathcal{H}$. We say that P and Q are perpendicular $P \perp Q$ if $P \mathcal{H} \perp Q \mathcal{H}$. We define also

$$
P \wedge Q=P_{P \mathcal{H} \cap Q \mathcal{H}}, P \vee Q=P_{\overline{P \mathcal{H}+Q \mathcal{H}}}
$$

Show that
(a) $P \leq Q$ if and only if $P Q=P=Q P$.
(b) $P \perp Q \Longleftrightarrow P Q=0 \Longleftrightarrow P \leq 1-Q$.
(c) $P \wedge Q$ is the greatest projection $E \in \mathcal{B}(\mathcal{H})$ with $E \leq P, E \leq Q$.
(d) $P \vee Q$ is the smallest projection $E \in \mathcal{B}(\mathcal{H})$ with $E \geq P, E \geq Q$.
(9) Problem 3 on page 45.
(10) Problem 6 on pge 45.

