HOMEWORK 1

DUE JANUARY 17, 2006

(1) Show that if $\mathbb{F}=\mathbb{C}$, a sesquilinear form is self-adjoint if and only if $\langle x, x\rangle \in \mathbb{R}$ for every $x \in \mathcal{H}$.
(2) Suppose that $\langle\cdot, \cdot\rangle$ is an inner product on the vector space \mathcal{H}. Prove the following polarization identity:
(1)

$$
4\langle x, y\rangle=\sum_{k=0}^{3} i^{k}\left\|x+i^{k} y\right\|^{2}
$$

Show that if a norm satisfies the parallelogram law, then the equation 1 will define an inner product on \mathcal{H}.
(3) Problems $\# 3,6,11$ from pages $6-7$.
(4) Problems \# 2,3,5 from page 11. For problem 5 you can use (without proof) problem 4.
(5) Problem \#2, 4 from page 13.

