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Gödel’s “Second” Incompleteness Theorem states that axiom systems of sufficiently great

strength are unable to formally verify their own consistency. Let A(x, y, z) denote a 3-way

predicate relation indicating that x + y = z, and let M(x, y, z) indicate that x ∗ y = z. Let

us say an axiom system α recognizes addition and multiplication as “Total” functions iff it

can prove:

∀x ∀y ∃z A(x, y, z) AND ∀x ∀y ∃z M(x, y, z) . (1)

In several recent articles, we have shown how such totality conditions are related to both gen-

eralizations and boundary-case style exceptions for Gödel’s Second Incompleteness Theorem.

This talk will survey several of our most recently published results [1, 2, 3, 4, 5, 6, 7] about

this subject.
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