Completeness

Compactness

and an application to

Ramsey's Theorem

Dartmouth Logic Seminar April 6, 2009 Marcia J. Groszek

None of the results in this talk are due to me.

A first-order formal language for talking about a kind of mathematical structure (for example, the language of ordered rings) has
formulas, such as $(x<y+((1+1) * x))$;
sentences, such as $(\forall x)(x+0=x)$, which are formulas with no free variables;
built from:
logical symbols: $\forall, \exists,(),, \neg($ not $), \wedge($ and $), \vee$ (or), $\rightarrow, \leftrightarrow,=, x, y, z \ldots$
(parameter) constant (0, 1), function (,$+ *$), and predicate $(<)$ symbols.

A structure for the language consists of a nonempty set X (the universe), together with elements of X, functions on X, and relations on X designated by the constant, function, and relation symbols of the language.

Note that not every structure for the language of ordered rings is an ordered ring.

A structure is a model for a set Σ of sentences (sometimes called axioms) if all the sentences of Σ are true in that model.

An ordered ring is a structure for this language that is a model of the axioms for an ordered ring.

A set of axioms Σ logically implies a sentence α,

$$
\Sigma \models \alpha
$$

if α is true in every model of Σ.

So, if Σ is the set of axioms for an ordered ring, $\Sigma \models \alpha$ just in case α is true in every ordered ring.
$\{\alpha \mid \Sigma \models \alpha\}$ is the theory with axioms Σ; in this example, it is the theory of ordered rings, in other words, the set of sentences true in every ordered ring.

A deduction (formal proof) of α from Σ is a finite sequence of formulas, each one of which either is in Σ, or is in a certain set \wedge of logical axioms, or is derived from earlier formulas in the sequence using one of a given set of logical rules.

Example logical axiom: $((\forall x(x+0=x)) \rightarrow(1+0=1))$.

Example logical rule:
From α and $(\alpha \rightarrow \beta)$, derive β.

If there is a deduction of α from Σ, we say α is deducible from Σ,

$$
\Sigma \vdash \alpha .
$$

Key features of formal deductions:

Formal deductions are logically valid:

$$
\Sigma \vdash \alpha \Longrightarrow \Sigma \models \alpha .
$$

If Σ is a finite set of axioms, then there is an algorithm that can tell whether a given finite sequence of formulas is a deduction from Σ or not:

The set of deductions from Σ is effectively decidable, or computable.

IMPORTANT WARNING:

$$
\{\alpha \mid \Sigma \vdash \alpha\}
$$

is in general NOT decidable.

Although we can decide whether a given finite sequence of formulas is a deduction from Σ, to tell whether $\Sigma \vdash \alpha$ we would have to examine infinitely many potential deductions.

In fact, in the language of ordered rings,

$$
\{\alpha \mid \emptyset \vdash \alpha\}
$$

is not decidable.

Gödel's Completeness Theorem:

$$
\Sigma \vDash \alpha \Longleftrightarrow \Sigma \vdash \alpha .
$$

For example, any sentence in the language of ordered rings is either provable from the axioms of ordered rings, or false in some ordered ring.

Compactness Theorem:

If Σ is a set of sentences such that every finite subset of Σ has a model, then Σ itself has a model.

Proof: Suppose Σ has no model. Then, vacuously, $\Sigma \models \alpha$ for every sentence α. By the Completeness Theorem, then, $\Sigma \vdash \alpha$ for every sentence α. For example,

$$
\Sigma \vdash(\exists x)(x \neq x) .
$$

Because deductions are finite, there is a finite subset $\Delta \subseteq \Sigma$ such that

$$
\Delta \vdash(\exists x)(x \neq x) .
$$

But then Δ is a finite subset of Σ with no model.

We use the Compactness Theorem to prove the finitary version of Ramsey's Theorem from the infinitary version.

First, some notation:

If X is any set, and $n \in \omega(\omega=\mathbb{N})$,

$$
[X]^{n}=\{Y \subseteq X| | Y \mid=n\}
$$

A coloring of X in k colors is a function

$$
c: X^{n} \rightarrow P
$$

where P is some set of size k.

A subset $H \subset X$ is homogeneous for c. or monochromatic, if for some color i,

$$
\left(\forall Y \in[H]^{n}\right)(c(Y)=i)
$$

If a and b are cardinal numbers (natural numbers or ω for our purposes), and n and k are natural numbers, then

$$
a \rightarrow(b)_{k}^{n}
$$

means that if A is a set of size a, for every coloring of $[A]^{n}$ in k colors, there is a homogenous subset $H \subset A$ of size b.

Ramsey's Theorem (Infinitary Version):

$$
(\forall n \in \omega)(\forall k \in \omega)\left(\omega \rightarrow(\omega)_{k}^{n}\right)
$$

Ramsey's Theorem (Finitary Version):

$$
(\forall n \in \omega)(\forall k \in \omega)(\forall b \in \omega)(\exists a \in \omega)\left(a \rightarrow(b)_{k}^{n}\right) .
$$

Proof of the finitary version of Ramsey's Theorem from the infinitary version:

Suppose the finitary version fails. Then, for some n, k, and b, for no $a \in \omega$ do we have

$$
\left(a \rightarrow(b)_{k}^{n}\right) .
$$

That is, for every $a \in \omega$ it is possible to color n-element subsets of a size a set in k colors so that no size b subset is monochromatic.

For typographical ease, we assume $n=k=2$.

This means the following set Σ of sentences has models of arbitrarily large finite size:

Our language has symbols R and B, for colors red and blue. We interpret the formula Rxy to mean that $\{x, y\}$ is assigned color red. We include in our set Σ axioms saying that this is really a coloring of sets of size 2 :

$$
\begin{gathered}
(\forall x)(\forall y)(x=y \rightarrow(\neg R x y \wedge \neg B x y)) ; \\
(\forall x)(\forall y)(x \neq y \rightarrow(R x y \leftrightarrow \neg B x y)) ; \\
(\forall x)(\forall y)(x \neq y \rightarrow(R x y \leftrightarrow R y x)) .
\end{gathered}
$$

We also include a sentence saying there is no size b homgeneous set:

$$
\begin{gathered}
\left(\forall x_{1}\right) \cdots\left(\forall x_{b}\right)\left(\left(\bigwedge_{1 \leq i<j \leq b} x_{i} \neq x_{j}\right) \rightarrow\right. \\
\left.\left(\bigvee_{1 \leq i<j \leq b} R x_{i} x_{j}\right) \wedge\left(\bigvee_{1 \leq i<j \leq b}^{\bigvee} B x_{i} x_{j}\right)\right)
\end{gathered}
$$

A model for Σ is a set X with a coloring of $[X]^{2}$ in colors R and B having no homogenous set of size b.

For every $a \in \omega$, because we do not have

$$
\left(a \rightarrow(b)_{2}^{2}\right)
$$

we do have a set X of size a with a coloring of $[X]^{2}$ in colors R and B having no homogeneous set of size b. That is, Σ has a model of size a, for every finite a.

Let σ_{a} be a sentence saying there are at least a elements in the universe:

$$
\left(\exists x_{1}\right) \cdots\left(\exists x_{a}\right)\left(\bigwedge_{1 \leq i<j \leq a} x_{i} \neq x_{j}\right)
$$

Because Σ has arbitrarily large finite models, every finite subset of Σ^{\prime} has a model, where

$$
\Sigma^{\prime}=\Sigma \cup\left\{\sigma_{a} \mid a \in \omega\right\}
$$

By Compactness, Σ^{\prime} has a model, where

$$
\Sigma^{\prime}=\Sigma \cup\left\{\sigma_{a} \mid a \in \omega\right\}
$$

That is, there is an infinite set X with a coloring of $[X]^{2}$ in two colors with no homogeneous set of size b.

By restricting to a subset of X (if necessary), we can assume X is countable, $|X|=\omega$.

If there is no homogenous set of size b, certainly there is no homogeneous set of size ω. That is, we have shown

$$
\omega \nrightarrow(\omega)_{2}^{2} .
$$

Hence the finitary version of Ramsey's Theorem (for $n=k=2$) follows from the infinitary version, via Compactness.

Here is a proof of the infinitary version of Ramsey's Theorem (for $n=k=2$). It's much easier than the proof for the finitary case (but gives less combinatorial information).
$8 \quad R \quad R \quad B \quad R \quad B \quad B \quad R \quad R$

$5 \quad B \quad R \quad R \quad B \quad R$
$4 \quad R \quad B \quad R \quad R$
$3 \quad R \quad B \quad R$
$2 R R$
$1 \quad B$
0

$$
\begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
$$

A coloring of $[\omega]^{2}$ in two colors.

The pair (a, b), where $a<b$, represents the set $\{a, b\}$.
$\begin{array}{lllllllll}81 & R & R & R & R & R & R & R & R\end{array}$
$56 \quad R \quad R \quad R \quad R \quad R \quad R \quad R$
$55 \quad R \quad R \quad R \quad R \quad R \quad R$
$34 \quad R \quad R \quad R \quad R \quad R$
$30 \quad R \quad R \quad R \quad R$
$24 \quad R \quad R \quad R$
$20 \quad R \quad R$
$7 \quad R$
0
$\begin{array}{llllllll}0 & 7 & 20 & 24 & 30 & 34 & 55 & 56\end{array}$
$H=\{0,7,20,24,30,34,55,56,81, \ldots\}$ is homogeneous in color red.

To construct a homogeneous set:

8		R	R	B	R	B	B	R

$X_{0}=\left\{b \in \omega-\left\{x_{0}\right\} \mid c(\{0, b\})=R\right\}$ if this is infinite;
$X_{0}=\left\{b \in \omega-\left\{x_{0}\right\} \mid c(\{0, b\})=B\right\}$ otherwise.
$C(0)=R$ or $C(0)=B$, respectively.

$$
\begin{array}{cllllllll}
14 & R & B & B & B & B & R & R & R \\
11 & R & B & R & R & R & B & R & \\
10 & R & R & B & B & R & B & & \\
8 & R & B & R & B & R & & & \\
7 & R & B & B & R & & & & \\
4 & R & R & R & & & & & \\
3 & R & R & & & & & & \\
2 & R & & & & & & & \\
0 & & & & & & & & \\
& 0 & 2 & 3 & 4 & 7 & 8 & 10 & 11
\end{array}
$$

$\left.\begin{array}{|ll|lll|l|l|l|}\hline 14 & & R & B & B & B & B & R \\ \hline\end{array}\right) R$
$x_{1}=\min \left(X_{0}\right)$
$X_{1}=\left\{b \in X_{0}-\left\{x_{1}\right\} \mid c\left(\left\{x_{1}, b\right\}\right)=R\right\}$ if this is infinite;
$X_{1}=\left\{b \in X_{0}-\left\{x_{1}\right\} \mid c\left(\left\{x_{1}, b\right\}\right)=B\right\}$ otherwise.
$C\left(x_{1}\right)=R$ or $C\left(x_{1}\right)=B$, respectively.

$18 \quad R \quad B \quad R \quad R \quad R \quad R$
$14 \quad R \quad B \quad B \quad R \quad R$
$11 \quad R \quad B \quad R \quad B$
$8 \quad R \quad B \quad R$
$7 \quad R \quad B$

2	R
0	

0	2	7	8	11	14	18	20

Continue: $x_{n+1}=\min \left(X_{n}\right)$
$X_{n+1}=\left\{b \in X_{n}-\left\{x_{n+1}\right\} \mid c\left(\left\{x_{n+1}, b\right\}\right)=R\right\}$ if this is infinite;
$X_{n+1}=\left\{b \in X_{n}-\left\{x_{n+1}\right\} \mid c\left(\left\{x_{n+1}, b\right\}\right)=B\right\}$ otherwise.
$C\left(x_{n+1}\right)=R$ or $C\left(x_{n+1}\right)=B$, respectively.

$$
\left.\begin{array}{lllllllll}
30 & R & B & R & B & B & R & B & R \\
24 & R & B & R & B & B & R & B & \\
23 & R & B & R & B & B & R & & \\
20 & R & B & R & B & B & & & \\
11 & R & B & R & B & & & & \\
8 & R & B & R & & & & & \\
7 & R & B & & & & & & \\
2 & R & & & & & & & \\
0 & & & & & & & & \\
& 0 & 2 & 7 & 8 & 11 & 20 & 23 & 24 \\
X=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}, \ldots\right.
\end{array}\right\} .
$$

30	R	B	R	B	B	R	B	R
24	R	B	R	B	B	R	B	
23	R	B	R	B	B	R		
20	R	B	R	B	B			
11	R	B	R	B				
8	R	B	R					
7	R	B						
2	R							
0	0	2	7	8	11	20	23	24

$$
H=\{x \in X \mid C(x)=B\} \text { otherwise. }
$$

81	R							
56	R							
55	R	R	R	R	R	R		
34	R	R	R	R	R			
30	R	R	R	R				
24	R	R	R					
20	R	R						
7	R							
0								

$$
\begin{array}{llllllll}
0 & 7 & 20 & 24 & 30 & 34 & 55 & 56
\end{array}
$$

H is homogeneous in color R or B, respectively.

