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A first-order formal language for talking about

a kind of mathematical structure (for example,

the language of ordered rings) has

formulas, such as (x < y + ((1 + 1) ∗ x));

sentences, such as (∀x)(x + 0 = x), which are

formulas with no free variables;

built from:

logical symbols: ∀, ∃, (, ), ¬ (not), ∧ (and), ∨
(or), →, ↔, =, x, y, z. . .

(parameter) constant (0, 1), function (+, ∗),

and predicate (<) symbols.



A structure for the language consists of a nonempty

set X (the universe), together with elements

of X, functions on X, and relations on X des-

ignated by the constant, function, and relation

symbols of the language.

Note that not every structure for the language

of ordered rings is an ordered ring.

A structure is a model for a set Σ of sentences

(sometimes called axioms) if all the sentences

of Σ are true in that model.

An ordered ring is a structure for this language

that is a model of the axioms for an ordered

ring.



A set of axioms Σ logically implies a sentence

α,

Σ |= α,

if α is true in every model of Σ.

So, if Σ is the set of axioms for an ordered ring,

Σ |= α just in case α is true in every ordered

ring.

{α | Σ |= α} is the theory with axioms Σ; in

this example, it is the theory of ordered rings,

in other words, the set of sentences true in

every ordered ring.



A deduction (formal proof) of α from Σ is a

finite sequence of formulas, each one of which

either is in Σ, or is in a certain set Λ of logical

axioms, or is derived from earlier formulas in

the sequence using one of a given set of logical

rules.

Example logical axiom:

((∀x(x+ 0 = x))→ (1 + 0 = 1)).

Example logical rule:

From α and (α→ β), derive β.

If there is a deduction of α from Σ, we say α

is deducible from Σ,

Σ ` α.



Key features of formal deductions:

Formal deductions are logically valid:

Σ ` α =⇒ Σ |= α.

If Σ is a finite set of axioms, then there is an

algorithm that can tell whether a given finite

sequence of formulas is a deduction from Σ or

not:

The set of deductions from Σ is effectively de-

cidable, or computable.



IMPORTANT WARNING:

{α | Σ ` α}

is in general NOT decidable.

Although we can decide whether a given finite

sequence of formulas is a deduction from Σ, to

tell whether Σ ` α we would have to examine

infinitely many potential deductions.

In fact, in the language of ordered rings,

{α | ∅ ` α}

is not decidable.



Gödel’s Completeness Theorem:

Σ |= α ⇐⇒ Σ ` α.

For example, any sentence in the language of

ordered rings is either provable from the axioms

of ordered rings, or false in some ordered ring.



Compactness Theorem:

If Σ is a set of sentences such that every finite

subset of Σ has a model, then Σ itself has a

model.

Proof: Suppose Σ has no model. Then, vac-

uously, Σ |= α for every sentence α. By the

Completeness Theorem, then, Σ ` α for every

sentence α. For example,

Σ ` (∃x)(x 6= x).

Because deductions are finite, there is a finite

subset ∆ ⊆ Σ such that

∆ ` (∃x)(x 6= x).

But then ∆ is a finite subset of Σ with no

model.



We use the Compactness Theorem to prove

the finitary version of Ramsey’s Theorem from

the infinitary version.

First, some notation:

If X is any set, and n ∈ ω (ω = N),

[X]n = {Y ⊆ X | |Y | = n}.

A coloring of X in k colors is a function

c : Xn → P

where P is some set of size k.

A subset H ⊂ X is homogeneous for c. or

monochromatic, if for some color i,

(∀Y ∈ [H]n)(c(Y ) = i).



If a and b are cardinal numbers (natural num-

bers or ω for our purposes), and n and k are

natural numbers, then

a→ (b)nk

means that if A is a set of size a, for every col-

oring of [A]n in k colors, there is a homogenous

subset H ⊂ A of size b.

Ramsey’s Theorem (Infinitary Version):

(∀n ∈ ω)(∀k ∈ ω)(ω → (ω)nk).

Ramsey’s Theorem (Finitary Version):

(∀n ∈ ω)(∀k ∈ ω)(∀b ∈ ω)(∃a ∈ ω)(a→ (b)nk).



Proof of the finitary version of Ramsey’s The-

orem from the infinitary version:

Suppose the finitary version fails. Then, for

some n, k, and b, for no a ∈ ω do we have

(a→ (b)nk).

That is, for every a ∈ ω it is possible to color

n-element subsets of a size a set in k colors so

that no size b subset is monochromatic.

For typographical ease, we assume n = k = 2.

This means the following set Σ of sentences

has models of arbitrarily large finite size:



Our language has symbols R and B, for colors

red and blue. We interpret the formula Rxy

to mean that {x, y} is assigned color red. We

include in our set Σ axioms saying that this is

really a coloring of sets of size 2:

(∀x)(∀y)(x = y → (¬Rxy ∧ ¬Bxy));

(∀x)(∀y)(x 6= y → (Rxy ↔ ¬Bxy));

(∀x)(∀y)(x 6= y → (Rxy ↔ Ryx)).

We also include a sentence saying there is no

size b homgeneous set:

(∀x1) · · · (∀xb)((
∧

1≤i<j≤b
xi 6= xj)→

 ∨
1≤i<j≤b

Rxixj

 ∧
 ∨

1≤i<j≤b
Bxixj

).



A model for Σ is a set X with a coloring of

[X]2 in colors R and B having no homogenous

set of size b.

For every a ∈ ω, because we do not have

(a→ (b)2
2),

we do have a set X of size a with a coloring of

[X]2 in colors R and B having no homogeneous

set of size b. That is, Σ has a model of size a,

for every finite a.

Let σa be a sentence saying there are at least

a elements in the universe:

(∃x1) · · · (∃xa)(
∧

1≤i<j≤a
xi 6= xj).

Because Σ has arbitrarily large finite models,

every finite subset of Σ′ has a model, where

Σ′ = Σ ∪ {σa | a ∈ ω}.



By Compactness, Σ′ has a model, where

Σ′ = Σ ∪ {σa | a ∈ ω}.

That is, there is an infinite set X with a color-

ing of [X]2 in two colors with no homogeneous

set of size b.

By restricting to a subset of X (if necessary),

we can assume X is countable, |X| = ω.

If there is no homogenous set of size b, cer-

tainly there is no homogeneous set of size ω.

That is, we have shown

ω 6→ (ω)2
2.

Hence the finitary version of Ramsey’s Theo-

rem (for n = k = 2) follows from the infinitary

version, via Compactness.



Here is a proof of the infinitary version of Ram-

sey’s Theorem (for n = k = 2). It’s much

easier than the proof for the finitary case (but

gives less combinatorial information).



8 R R B R B B R R
7 R B B B R B B
6 B R B B R B
5 B R R B R
4 R B R R
3 R B R
2 R R
1 B
0

0 1 2 3 4 5 6 7

A coloring of [ω]2 in two colors.

The pair (a, b), where a < b, represents the set

{a, b}.



81 R R R R R R R R
56 R R R R R R R
55 R R R R R R
34 R R R R R
30 R R R R
24 R R R
20 R R
7 R
0

0 7 20 24 30 34 55 56

H = {0,7,20,24,30,34,55,56,81, . . . } is ho-

mogeneous in color red.

To construct a homogeneous set:



8 R R B R B B R R

7 R B B B R B B
6 B R B B R B
5 B R R B R

4 R B R R

3 R B R

2 R R
1 B

0
0 1 2 3 4 5 6 7

x0 = 0

X0 = {b ∈ ω − {x0} | c({0, b}) = R} if this is

infinite;

X0 = {b ∈ ω − {x0} | c({0, b}) = B} otherwise.

C(0) = R or C(0) = B, respectively.



14 R B B B B R R R
11 R B R R R B R
10 R R B B R B
8 R B R B R
7 R B B R
4 R R R
3 R R
2 R

0
0 2 3 4 7 8 10 11



14 R B B B B R R R

11 R B R R R B R
10 R R B B R B

8 R B R B R

7 R B B R
4 R R R
3 R R

2 R

0
0 2 3 4 7 8 10 11

x1 = min(X0)

X1 = {b ∈ X0 − {x1} | c({x1, b}) = R} if this is

infinite;

X1 = {b ∈ X0−{x1} | c({x1, b}) = B} otherwise.

C(x1) = R or C(x1) = B, respectively.



23 R B R R B B R R
20 R B R B B B B
18 R B R R R R
14 R B B R R
11 R B R B
8 R B R
7 R B

2 R

0
0 2 7 8 11 14 18 20

Continue: xn+1 = min(Xn)

Xn+1 = {b ∈ Xn− {xn+1} | c({xn+1, b}) = R} if

this is infinite;

Xn+1 = {b ∈ Xn − {xn+1} | c({xn+1, b}) = B}
otherwise.

C(xn+1) = R or C(xn+1) = B, respectively.



30 R B R B B R B R
24 R B R B B R B
23 R B R B B R
20 R B R B B
11 R B R B
8 R B R
7 R B
2 R
0

0 2 7 8 11 20 23 24

X = {x0, x1, x2, . . . , xn, . . . }.



30 R B R B B R B R

24 R B R B B R B
23 R B R B B R

20 R B R B B
11 R B R B
8 R B R

7 R B
2 R

0
0 2 7 8 11 20 23 24

H = {x ∈ X | C(x) = R} if this is infinite;

H = {x ∈ X | C(x) = B} otherwise.



81 R R R R R R R R
56 R R R R R R R
55 R R R R R R
34 R R R R R
30 R R R R
24 R R R
20 R R
7 R
0

0 7 20 24 30 34 55 56

H is homogeneous in color R or B, respectively.


