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Outline of the talk

◮ Limit complexity of infinite computable
sequences

◮ Limit complexity of finite sequences

◮ Applications to 2-randomness
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A. Meyer:
ω is computable ⇔ C (ωn|n) = O(1)

3 / 21



Complexities of computable sequences

A. Meyer:
ω is computable ⇔ C (ωn|n) = O(1)

Main goal: want a quantitative version of Meyer’s
result.

3 / 21



Complexities of computable sequences

A. Meyer:
ω is computable ⇔ C (ωn|n) = O(1)

Main goal: want a quantitative version of Meyer’s
result.

◮ C (ω) = min{|p| : p(n) = ωn}

3 / 21



Complexities of computable sequences

A. Meyer:
ω is computable ⇔ C (ωn|n) = O(1)

Main goal: want a quantitative version of Meyer’s
result.

◮ C (ω) = min{|p| : p(n) = ωn} [well defined]

3 / 21



Complexities of computable sequences

A. Meyer:
ω is computable ⇔ C (ωn|n) = O(1)

Main goal: want a quantitative version of Meyer’s
result.

◮ C (ω) = min{|p| : p(n) = ωn} [well defined]

◮ N(ω) = maxC (ωn|n)

3 / 21



Complexities of computable sequences

A. Meyer:
ω is computable ⇔ C (ωn|n) = O(1)

Main goal: want a quantitative version of Meyer’s
result.

◮ C (ω) = min{|p| : p(n) = ωn} [well defined]

◮ N(ω) = maxC (ωn|n)

N(ω) 6 C (ω)

3 / 21



Theorem (Durand, Shen, V. 1999)
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Proof of ∃ω C∞(ω) ≪ N(ω)
T. Kamae’s example (1973): let x be the lex first
string of length m and complexity > m. Then

∀∞n C (x |n) ≪ C (x)
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string of length m and complexity > m. Then

∀∞n C (x |n) ≪ C (x)

Proof of ∃ω C∞(ω) ≪ N(ω):

ω = x000 . . .

where x is the lex first string of length m with

C (x |m) > m
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Comparing limit complexities

◮ C∞(ω) = min{|p| : ∀∞n p(n) = ωn}

◮ N∞(ω) = lim supC (ωn|n)
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Theorem (Durand, Shen, V. 1999)
C∞(ω) 6 2N∞(ω).

[line instead of rectangle]

Theorem (Durand, Shen, V. 1999)
For all m there exists ω s.t.

◮ C∞(ω) = 2m

◮ N∞(ω) = m

◮ and, moreover, N(ω) = m.
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Proof of C∞(ω) 6 2N∞(ω)

Given that ∀∞n C (ωn|n) 6 m
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Given that ∀∞n C (ωn|n) 6 m

Find p of length 2m such that ∀∞n p(n) = ωn

Muchnik’s construction:

◮ ln = #{x : |x | = n, C (x |n) 6 m, x 6 ωn}

◮ rn = #{x : |x | = n, C (x |n) 6 m, x > ωn}

◮ p = (lim sup ln, lim sup rn).

Why it works? [Picture]

9 / 21



Proof of ∃ω C∞(ω) = 2m, N(ω) = m
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Relation to relativized complexity

Theorem (Durand, Shen, V. 1999)

◮ C 0′(ω) 6 C∞(ω).
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Kamae’s example: there are p, x such that

|p| ≪ C (x), ∀∞n p(n) = x

Definition:

C∞(x) = min{|p| : ∀∞n p(n) = x}

The non-uniform version of C∞(x) is

N∞(x) = lim supC (x |n)
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Theorem
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Understanding the inequality
C 0′(x) 6 lim sup C (x |n)

lim supC (x |n) < m ⇔
x belongs to almost all sets

Un = {x | C (x |n) < m}

As |Un| < 2m, there are less than 2m such x ’s.
Hence C 0′′(x) < m for all such x ’s.

Theorem (V. 2002)
There is a Σ2 set of cardinality 6 2m covering all

such x’s
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An open question
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An open question

Un ⊂ Ω (the set of infinite 0-1-sequences)

µ(Un) 6 ε

Let U = lim inf Un.

We have µ(U) 6 ε

⇒ (∀ε′ > ε) (∃ open V ⊃ U) µ(V ) < ε′.

Question: Given a uniformly effectively open family
Un is there a 0′-effectively open such V ?
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Partial positive answers (LMSV)

◮ There exists an effectively open covering of
measure ε of a smaller set

⋃

N

Int(
⋂

n>N

Un)
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Partial positive answers (LMSV)

◮ There exists an effectively open covering of
measure ε of a smaller set

⋃

N

Int(
⋂

n>N

Un)

◮ Yes, if Un has “effectively bounded granularity”.
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Nies, Stephan, Terwijn 2005: ω is 2-random
⇔ ∃m ∃∞n d(ωn) 6 m. [picture]

Proof of ⇒-part:

d(ωn) > m ⇔ ω ∈ Un

where Un =
⋃

|x |=n, d(x)>m Ωx
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Relation to 2-randomness (continued)

Another randomness deficiency:
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Another randomness deficiency:

◮ d̄(x) = miny⊃x d(y) (Kolmogorov 1968, Miller
2004)

Miller 2004: ω is 2-random ⇔ d̄(ωN) = O(1).

Proof of ⇒-part: [follows from NST]

d̄(x) > m ⇔ (∀n > |x |) Ωx ⊂ Un

where Un =
⋃

|y |=n, d(y)>m Ωy
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Generalization to prefix complexity

[different definitions]

Theorem (Shen, V. textbook being written)

K∞(x) = K 0′(x)

Theorem (Bienvenue, Muchnik, Shen, V.)

lim supK (x |n) = K 0′(x)
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A related result: Muchnik’s understanding
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A related result: Muchnik’s understanding
of m0′

a1, a2, a3, . . . is a computable sequence of integers

f (x) = lim inf #{i6n|ai=x}
n

Theorem
f (x) is a lower 0′-semicomputable semimeasure on

integers

Theorem (Muchnik 1987)
There is a computable sequence a1, a2, a3, . . . such

that f (x) = m0′(x).
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Refernces available on-line

◮ Laurent Bienvenu, Andrej Muchnik, Alexander
Shen, Nikolay Vereshchagin. Limit complexities
revisited.
http://lpcs.math.msu.su/˜ver/papers/laurent.pdf

◮ B. Durand, A. Shen, and N. Vereshchagin.
Descriptive complexity of computable
sequences.
http://lpcs.math.msu.su/˜ver/papers/seq.ps

◮ N. Vereshchagin. Complexity Conditional to
Large Integers.
http://lpcs.math.msu.su/˜ver/papers/lc.ps
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