Limit complexity of finite and infinite sequences

Nikolay Vereshchagin

Lomonosov Moscow State University

FRG workshop, 2007

Outline of the talk

- Limit complexity of infinite computable sequences
- Limit complexity of finite sequences
- Applications to 2-randomness

A. Meyer: ω is computable $\Leftrightarrow C(\omega_n|n) = O(1)$

A. Meyer: ω is computable $\Leftrightarrow C(\omega_n|n) = O(1)$

A. Meyer: ω is computable $\Leftrightarrow C(\omega_n|n) = O(1)$

•
$$C(\omega) = \min\{|p| : p(n) = \omega_n\}$$

A. Meyer: ω is computable $\Leftrightarrow C(\omega_n|n) = O(1)$

$$\blacktriangleright$$
 $\mathcal{C}(\omega) = \min\{|p|: p(n) = \omega_n\}$ [well defined]

A. Meyer: ω is computable $\Leftrightarrow C(\omega_n|n) = O(1)$

•
$$C(\omega) = \min\{|p| : p(n) = \omega_n\}$$
 [well defined]
• $N(\omega) = \max C(\omega_n|n)$

A. Meyer: ω is computable $\Leftrightarrow C(\omega_n|n) = O(1)$

•
$$C(\omega) = \min\{|p| : p(n) = \omega_n\}$$
 [well defined]
• $N(\omega) = \max C(\omega_n|n)$

$$N(\omega) \leqslant C(\omega)$$

Theorem (Durand, Shen, V. 1999) $\exists \omega \ N(\omega) \ll C(\omega)$

Theorem (Durand, Shen, V. 1999) $\exists \omega \ N(\omega) \ll C(\omega)$

Proof:

$\omega = \mathbf{00} \dots \mathbf{011111111111111} \dots$

where the number of zeros is the maximal running time of programs of length m

Theorem (Durand, Shen, V. 1999) $\exists \omega \ N(\omega) \ll C(\omega)$

Proof:

$\omega = \mathbf{00} \dots \mathbf{011111111111111} \dots$

where the number of zeros is the maximal running time of programs of length m [busy beaver]

•
$$C_{\infty}(\omega) = \min\{|p| : \forall^{\infty}n \ p(n) = \omega_n\}$$

•
$$C_{\infty}(\omega) = \min\{|p| : \forall^{\infty}n \ p(n) = \omega_n\}$$

• $N_{\infty}(\omega) = \limsup C(\omega_n|n)$

•
$$C_{\infty}(\omega) = \min\{|p| : \forall^{\infty}n \ p(n) = \omega_n\}$$

• $N_{\infty}(\omega) = \limsup C(\omega_n|n)$

[Picture]

•
$$C_{\infty}(\omega) = \min\{|p| : \forall^{\infty} n \ p(n) = \omega_n\}$$

• $N_{\infty}(\omega) = \limsup C(\omega_n | n)$

[Picture]

Theorem (Durand, Shen, V. 1999) $\exists \omega \ N_{\infty}(\omega) \leq C_{\infty}(\omega) \ll N(\omega) \leq C(\omega)$

Proof of $\exists \omega \ C_{\infty}(\omega) \ll N(\omega)$

T. Kamae's example (1973): let x be the lex first string of length m and complexity $\ge m$. Then

$$\forall^{\infty} n \quad C(x|n) \ll C(x)$$

Proof of $\exists \omega \ C_{\infty}(\omega) \ll N(\omega)$

T. Kamae's example (1973): let x be the lex first string of length m and complexity $\ge m$. Then

 $\forall^{\infty} n \quad C(x|n) \ll C(x)$

Proof of $\exists \omega \ C_{\infty}(\omega) \ll N(\omega)$:

 $\omega = x000\ldots$

Proof of $\exists \omega \ C_{\infty}(\omega) \ll N(\omega)$

T. Kamae's example (1973): let x be the lex first string of length m and complexity $\ge m$. Then

$$\forall^{\infty} n \quad C(x|n) \ll C(x)$$

Proof of
$$\exists \omega \ \mathsf{C}_{\infty}(\omega) \ll \mathsf{N}(\omega)$$
:

 $\omega = x000\ldots$

where x is the lex first string of length m with

 $C(x|m) \ge m$

•
$$C_{\infty}(\omega) = \min\{|p| : \forall^{\infty} n \ p(n) = \omega_n\}$$

• $N_{\infty}(\omega) = \limsup C(\omega_n | n)$

Theorem (Durand, Shen, V. 1999) $\exists \omega \ N_{\infty}(\omega) \leq C_{\infty}(\omega) \ll N(\omega) \leq C(\omega)$

Theorem (Durand, Shen, V. 1999) $C_{\infty}(\omega) \leq 2N_{\infty}(\omega).$

Theorem (Durand, Shen, V. 1999) $C_{\infty}(\omega) \leq 2N_{\infty}(\omega).$

[line instead of rectangle]

Theorem (Durand, Shen, V. 1999) $C_{\infty}(\omega) \leq 2N_{\infty}(\omega).$

[line instead of rectangle]

Theorem (Durand, Shen, V. 1999) For all m there exists ω s.t.

•
$$C_{\infty}(\omega) = 2m$$

•
$$N_{\infty}(\omega) = m$$

Theorem (Durand, Shen, V. 1999) $C_{\infty}(\omega) \leq 2N_{\infty}(\omega).$

[line instead of rectangle]

Theorem (Durand, Shen, V. 1999) For all m there exists ω s.t.

- $C_{\infty}(\omega) = 2m$
- $N_{\infty}(\omega) = m$
- and, moreover, $N(\omega) = m$.

Proof of $C_{\infty}(\omega) \leq 2N_{\infty}(\omega)$

Given that $\forall^{\infty} n \ C(\omega_n | n) \leq m$

Proof of $C_{\infty}(\omega) \leq 2N_{\infty}(\omega)$

Given that $\forall^{\infty} n \ C(\omega_n | n) \leq m$

Find *p* of length 2m such that $\forall^{\infty}n \ p(n) = \omega_n$

Proof of $C_{\infty}(\omega) \leq 2N_{\infty}(\omega)$

Muchnik's construction:

Proof of $C_{\infty}(\omega) \leq 2N_{\infty}(\omega)$

Muchnik's construction: $I_n = \#\{x : |x| = n, C(x|n) \leq m, x \leq \omega_n\}$

Proof of $C_{\infty}(\omega) \leq 2N_{\infty}(\omega)$

Muchnik's construction:

►
$$I_n = \#\{x : |x| = n, C(x|n) \leq m, x \leq \omega_n\}$$

► $r_n = \#\{x : |x| = n, C(x|n) \leq m, x \geq \omega_n\}$

Proof of $C_{\infty}(\omega) \leq 2N_{\infty}(\omega)$

Muchnik's construction:

•
$$I_n = \#\{x : |x| = n, C(x|n) \leq m, x \leq \omega_n\}$$

• $r_n = \#\{x : |x| = n, C(x|n) \leq m, x \geq \omega_n\}$
• $p = (\limsup I_n, \limsup r_n).$

Proof of $C_{\infty}(\omega) \leq 2N_{\infty}(\omega)$

Muchnik's construction:

•
$$I_n = \#\{x : |x| = n, C(x|n) \leq m, x \leq \omega_n\}$$

• $r_n = \#\{x : |x| = n, C(x|n) \leq m, x \geq \omega_n\}$
• $p = (\limsup I_n, \limsup r_n).$

Why it works? [Picture]

Proof of $\exists \omega \ C_{\infty}(\omega) = 2m, \ N(\omega) = m$

Theorem (Durand, Shen, V. 1999)

• $C^{0'}(\omega) \leqslant C_{\infty}(\omega)$.

Theorem (Durand, Shen, V. 1999)

•
$$C^{0'}(\omega) \leq C_{\infty}(\omega).$$

• $C^{0''}(\omega) \leq N_{\infty}(\omega).$

Theorem (Durand, Shen, V. 1999)

•
$$C^{0'}(\omega) \leqslant C_{\infty}(\omega).$$

• $C^{0''}(\omega) \leqslant N_{\infty}(\omega).$

Questions (ω is computable)

•
$$C^{0'}(\omega) \leqslant N_{\infty}(\omega)$$
?

Theorem (Durand, Shen, V. 1999)

•
$$C^{0'}(\omega) \leqslant C_{\infty}(\omega).$$

• $C^{0''}(\omega) \leqslant N_{\infty}(\omega).$

Questions (ω is computable)

•
$$C^{0'}(\omega) \leqslant N_{\infty}(\omega)$$
?
• $N_{\infty}(\omega) \leqslant C^{0'}(\omega)$?

Theorem (Durand, Shen, V. 1999)

•
$$C^{0'}(\omega) \leqslant C_{\infty}(\omega).$$

• $C^{0''}(\omega) \leqslant N_{\infty}(\omega).$

Questions (ω is computable)

•
$$C^{0'}(\omega) \leq N_{\infty}(\omega)$$
?
• $N_{\infty}(\omega) \leq C^{0'}(\omega)$?
• $C_{\infty}(\omega) \leq C^{0'}(\omega)$?

Limit complexity of finite objects

Kamae's example: there are p, x such that

$$|p| \ll C(x), \ \forall^{\infty}n \ p(n) = x$$

Limit complexity of finite objects

Kamae's example: there are p, x such that

$$|p| \ll C(x), \ \forall^{\infty}n \ p(n) = x$$

Definition:

$$C_{\infty}(x) = \min\{|p|: \forall^{\infty}n \ p(n) = x\}$$

Limit complexity of finite objects

Kamae's example: there are p, x such that

$$|p| \ll C(x), \ \forall^{\infty}n \ p(n) = x$$

Definition:

$$C_{\infty}(x) = \min\{|p|: \forall^{\infty}n \ p(n) = x\}$$

The non-uniform version of $C_{\infty}(x)$ is

$$N_{\infty}(x) = \limsup C(x|n)$$

Theorem

[authors]

 $C_{\infty}(x) = C^{0'}(x)$

Theorem

[authors]

 $C_{\infty}(x) = C^{0'}(x)$

Theorem (V. 2002)

$$\limsup C(x|n) = C^{0'}(x)$$

 $\limsup C(x|n) < m \Leftrightarrow$

 $\limsup_{x \text{ belongs to almost all sets}} C(x|n) < m \Leftrightarrow$

$$U_n = \{x \mid C(x|n) < m\}$$

 $\limsup_{x \text{ belongs to almost all sets}} C(x|n) < m \Leftrightarrow$

$$U_n = \{x \mid C(x|n) < m\}$$

As $|U_n| < 2^m$, there are less than 2^m such x's. Hence $C^{0''}(x) < m$ for all such x's.

 $\limsup_{x \text{ belongs to almost all sets}} C(x|n) < m \Leftrightarrow$

$$U_n = \{x \mid C(x|n) < m\}$$

As $|U_n| < 2^m$, there are less than 2^m such x's. Hence $C^{0''}(x) < m$ for all such x's.

Theorem (V. 2002)

There is a Σ_2 set of cardinality $\leq 2^m$ covering all such x's

$U_n \subset \Omega$ (the set of infinite 0-1-sequences)

$U_n \subset \Omega$ (the set of infinite 0-1-sequences)

 $\mu(U_n)\leqslant\varepsilon$

 $U_n \subset \Omega$ (the set of infinite 0-1-sequences)

 $\mu(U_n)\leqslant\varepsilon$

Let $U = \liminf U_n$.

 $U_n \subset \Omega$ (the set of infinite 0-1-sequences)

 $\mu(U_n)\leqslant\varepsilon$

Let $U = \liminf U_n$.

We have $\mu(U) \leq \varepsilon$ $\Rightarrow (\forall \varepsilon' > \varepsilon) (\exists \text{ open } V \supset U) \mu(V) < \varepsilon'.$

 $U_n \subset \Omega$ (the set of infinite 0-1-sequences)

 $\mu(U_n)\leqslant\varepsilon$

Let $U = \liminf U_n$.

We have
$$\mu(U) \leq \varepsilon$$

 $\Rightarrow (\forall \varepsilon' > \varepsilon) (\exists \text{ open } V \supset U) \ \mu(V) < \varepsilon'.$

Question: Given a uniformly effectively open family U_n is there a 0'-effectively open such V?

Partial positive answers (LMSV)

 There exists an effectively open covering of measure ε of a smaller set

$$\bigcup_{N} \operatorname{Int}(\bigcap_{n>N} U_n)$$

Partial positive answers (LMSV)

 There exists an effectively open covering of measure ε of a smaller set

$$\bigcup_{N} \operatorname{Int}(\bigcap_{n>N} U_n)$$

▶ Yes, if U_n has "effectively bounded granularity".

Randomness deficiency:

•
$$d(x) = |x| - C(x)$$
 (Kolmogorov 1965)

Randomness deficiency:

•
$$d(x) = |x| - C(x)$$
 (Kolmogorov 1965)

Nies, Stephan, Terwijn 2005: ω is 2-random $\Leftrightarrow \exists m \exists^{\infty} n \ d(\omega_n) \leqslant m$.

Randomness deficiency:

•
$$d(x) = |x| - C(x)$$
 (Kolmogorov 1965)

Nies, Stephan, Terwijn 2005: ω is 2-random $\Leftrightarrow \exists m \exists^{\infty} n \ d(\omega_n) \leqslant m.$

Randomness deficiency:

•
$$d(x) = |x| - C(x)$$
 (Kolmogorov 1965)

Nies, Stephan, Terwijn 2005: ω is 2-random $\Leftrightarrow \exists m \exists^{\infty} n \ d(\omega_n) \leqslant m.$

Proof of \Rightarrow -part:

Randomness deficiency:

•
$$d(x) = |x| - C(x)$$
 (Kolmogorov 1965)

Nies, Stephan, Terwijn 2005: ω is 2-random $\Leftrightarrow \exists m \exists^{\infty} n \ d(\omega_n) \leqslant m.$

Proof of \Rightarrow -part:

$$d(\omega_n) > m \Leftrightarrow \omega \in U_n$$

where
$$U_n = igcup_{|x|=n, \ d(x)>m} \Omega_x$$

Another randomness deficiency:

• $\overline{d}(x) = \min_{y \supset x} d(y)$ (Kolmogorov 1968, Miller 2004)

Another randomness deficiency:

• $\overline{d}(x) = \min_{y \supset x} d(y)$ (Kolmogorov 1968, Miller 2004)

Miller 2004: ω is 2-random $\Leftrightarrow \overline{d}(\omega_N) = O(1)$.

Another randomness deficiency:

• $\overline{d}(x) = \min_{y \supset x} d(y)$ (Kolmogorov 1968, Miller 2004)

Miller 2004: ω is 2-random $\Leftrightarrow \overline{d}(\omega_N) = O(1)$.

Proof of \Rightarrow *-part:*

Another randomness deficiency:

• $\overline{d}(x) = \min_{y \supset x} d(y)$ (Kolmogorov 1968, Miller 2004)

Miller 2004: ω is 2-random $\Leftrightarrow \overline{d}(\omega_N) = O(1)$.

Proof of \Rightarrow -part: [follows from NST]

Another randomness deficiency:

• $\overline{d}(x) = \min_{y \supset x} d(y)$ (Kolmogorov 1968, Miller 2004)

Miller 2004: ω is 2-random $\Leftrightarrow \overline{d}(\omega_N) = O(1)$.

Proof of \Rightarrow -part: [follows from NST]

 $\bar{d}(x) \geqslant m \Leftrightarrow (\forall n \geqslant |x|) \ \Omega_x \subset U_n$

where $U_n = \bigcup_{|y|=n, d(y) \ge m} \Omega_y$

[different definitions]

[different definitions]

Theorem (Shen, V. textbook being written)

$$K_{\infty}(x) = K^{0'}(x)$$

[different definitions]

Theorem (Shen, V. textbook being written)

$$K_{\infty}(x) = K^{0'}(x)$$

Theorem (Bienvenue, Muchnik, Shen, V.)

$$\limsup K(x|n) = K^{0'}(x)$$

 a_1, a_2, a_3, \ldots is a computable sequence of integers

 a_1, a_2, a_3, \dots is a computable sequence of integers $f(x) = \liminf \frac{\#\{i \le n | a_i = x\}}{n}$

 a_1, a_2, a_3, \dots is a computable sequence of integers $f(x) = \liminf \frac{\#\{i \le n | a_i = x\}}{n}$

Theorem f(x) is a lower 0'-semicomputable semimeasure on integers

 a_1, a_2, a_3, \dots is a computable sequence of integers $f(x) = \liminf \frac{\#\{i \le n | a_i = x\}}{n}$

Theorem f(x) is a lower 0'-semicomputable semimeasure on integers

Theorem (Muchnik 1987)

There is a computable sequence a_1, a_2, a_3, \ldots such that $f(x) = m^{0'}(x)$.

Refernces available on-line

 Laurent Bienvenu, Andrej Muchnik, Alexander Shen, Nikolay Vereshchagin. Limit complexities revisited.

http://lpcs.math.msu.su/~ver/papers/laurent.pdf

 B. Durand, A. Shen, and N. Vereshchagin. Descriptive complexity of computable sequences.

http://lpcs.math.msu.su/~ver/papers/seq.ps

 N. Vereshchagin. Complexity Conditional to Large Integers. http://lpcs.math.msu.su/~ver/papers/lc.ps