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Outline of the talk

» Limit complexity of infinite computable
sequences

» Limit complexity of finite sequences

» Applications to 2-randomness
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A. Meyer:
w is computable < C(w,|n) = O(1)

Main goal: want a quantitative version of Meyer's
result.

> C(W) = mln{]p] . p(n) = w,,} [well defined]
» N(w) = max C(wy|n)

N(w) < C(w)
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Proof of Jw C(w) < N(w)

T. Kamae's example (1973): let x be the lex first
string of length m and complexity > m. Then

V*n C(x|n) < C(x)

Proof of dw Cy(w) < N(w):
w = x000...
where x is the lex first string of length m with

C(x|m) = m



Comparing limit complexities

» Co(w) = min{|p| : V*°n p(n) = w,}
» Noo(w) = limsup C(ws|n)

Theorem (Durand, Shen, V. 1999)
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Theorem (Durand, Shen, V. 1999)
Coo(w) < 2N (w).

[line instead of rectangle]

Theorem (Durand, Shen, V. 1999)
For all m there exists w s.t.

» Co(w) =2m

> Noo(w) =m

» and, moreover, N(w) = m.
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Proof of Co(w) < 2N (w)

Given that V*°n C(wp|n) < m
Find p of length 2m such that V*°n p(n) = w,

Muchnik’s construction:
» L, =#{x:|x| =n, C(x|n)
> rp = #{x:|x| =n, C(x|n)

» p = (limsup/,, limsupr,).

<m, x <wpy}
<m, X 2wy}

Y

Why it WorkS7 [Picture]



Proof of dw Co(w) =2m, N(w) = m
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Limit complexity of finite objects

Kamae's example: there are p, x such that

pl < C(x), ¥n p(n) = x

Definition:
Coo(x) = min{|p| : V*n p(n) = x}
The non-uniform version of Cy(x) is

Noo(x) = limsup C(x|n)



Comparing limit complexities

Theorem

[authors]
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Comparing limit complexities

Theorem

[authors]

Cuo(x) = C%(x)

Theorem (V. 2002)

limsup C(x|n) = CY(x)
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Understanding the inequality
CY(x) < limsup C(x|n)

limsup C(x|n) < m<
x belongs to almost all sets

U, = {x | C(x|n) < m}

As |U,| < 2™, there are less than 2 such x's.
Hence C%(x) < m for all such x's.

Theorem (V. 2002)

There is a X, set of cardinality < 2™ covering all
such x’s
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An open question

U, C Q (the set of infinite 0-1-sequences)
u(Un) < e
Let U = liminf U,.

We have p(U) < ¢
= (V&' >¢) (Fopen VDO U) u(V) <e.

Question: Given a uniformly effectively open family
U, is there a 0'-effectively open such V?



Partial positive answers (LMSV)

» There exists an effectively open covering of
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Ulnt(ﬂ Un)

n>N
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Partial positive answers (LMSV)

» There exists an effectively open covering of
measure € of a smaller set

Ulnt(ﬂ Un)

n>N

» Yes, if U, has “effectively bounded granularity” .
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Relation to 2-randomness

Randomness deficiency:
» d(x) = |x| — C(x) (Kolmogorov 1965)

Nies, Stephan, Terwijn 2005: w is 2-random
& dm 3%°n d(w,) < m.

Proof of =-part:
d(w,) >me we U,

Where Un — U|x|:n, d(x)>m QX

[picture]
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Relation to 2-randomness (continued)

Another randomness deficiency:

» d(x) = min,5, d(y) (Kolmogorov 1968, Miller
2004)

Miller 2004: w is 2-random < d(wy) = O(1).
Proof of =>-Ppart: f(foliows from NST]
d(x) = m< (Vn> |x|) Q. C U,

where U, = U|y|:,,, d(y)=m Q,
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Generalization to prefix complexity

[different definitions]

Theorem (Shen, V. textbook being written)

K (x) = K7 (x)

Theorem (Bienvenue, Muchnik, Shen, V.)

limsup K (x|n) = K%(x)
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A related result: Muchnik’s understanding

/
of mY

ai, a, as, ... is a computable sequence of integers

f(x) = liminf 7#{i<':7|a’zx}

Theorem
f(x) is a lower 0'-semicomputable semimeasure on
integers

Theorem (Muchnik 1987)

There is a computable sequence a1, as, as, ... such
that f(x) = m¥(x).
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Refernces available on-line

» Laurent Bienvenu, Andrej Muchnik, Alexander
Shen, Nikolay Vereshchagin. Limit complexities
revisited.
http://Ipcs.math.msu.su/"ver/papers/laurent.pdf

» B. Durand, A. Shen, and N. Vereshchagin.
Descriptive complexity of computable
sequences.
http://Ipcs.math.msu.su/"ver/papers/seq.ps

» N. Vereshchagin. Complexity Conditional to
Large Integers.
http://Ipcs.math.msu.su/"ver/papers/Ic.ps
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