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1. Introduction

This is the open problem list for the AIM workshop in Effective Randomness
organized by Hirschfeldt and Miller, held at ARCC, Palo Alto, CA, Aug 7–11,
2006. It is intended to be self-contained regarding definitions, but contains no
proofs. There is nontrivial overlap between this list and that of Miller and Nies,
though each contains many questions not in the other. In particular, this list
contains many “soft” questions, those which are not answerable by “yes” or “no”.

1.1. Conference participant interest summary. Computability (recursion) the-
ory has been applied to solve problems in randomness, as well as simply to find
workable definitions of randomness. Problems in randomness, conversely, have led
to new proof techniques, examples, and questions in computability, as well as re-
sults related to Turing degrees and other well-established elements of traditional
computability theory. What additional connections can be found, particularly in
the randomness-to-computability direction? Going further, what connections (ad-
ditional to those already known) can be found between randomness and set theory,
mass problems, reverse mathematics, effective dimension, information theory, com-
putable analysis, and mathematics at large? How do we extend the notion of ran-
domness to sets and functions? What is the right way to compare the randomness
of different real numbers? And finally, how can our study of abstract randomness
be applied to the practical question of pseudo-random number generation?

1.2. Notation. Different traditions give varying notation for the same concepts.
For countable infinity, ∞, ω, and N are used. As a superscript Xω they indicate the
set of infinite strings on the alphabet X. The set of finite strings on X is indicated
by X<ω (et al.) or X∗. When {0, 1, . . . , k − 1} is playing the role of X it may be
abbreviated to k.

For an infinite sequence α, α � n means the restriction to the length-n initial
segment of α, or in other words to α[0]α[1] . . . α[n−1]. When σ is a finite string and
ρ is either finite or infinite, σ ⊆ ρ means σ is an initial segment of ρ. Concatenation
of σ and τ is denoted σ_τ or simply στ . The join of two infinite strings, A⊕B, is the
interleaving of their bits. In terms of sets, A⊕B = {2n : n ∈ A}∪{2n+1 : n ∈ B}.

The notation +c or +O(1) will always mean a constant independent of the input.
Measure µ used without specification means Lebesgue measure; on the binary

tree this is the coin-toss probability measure.

1.3. Definitions used throughout. We begin with few basic definitions. By real
we mean an element of 2ω. A computable real is one which is the characteristic
function of a computable set. A c.e. real, however, is the limit of a computably
increasing sequence of rationals. This is also called left c.e., to distinguish it better
from strongly c.e. reals, those which are the characteristic function of a c.e. set.

A truth table is a Boolean combination of finitely-many variables xi; they may
be computably enumerated. A set X satisfies the truth table if, interpreting i ∈ X
as xi and i /∈ X as ¬xi, the Boolean combination is true for X. A is truth-table
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reducible (tt-reducible) to B, A ≤tt B, if there is a computable function f such
that n ∈ A if and only if B satisfies the f(n)th truth table.

The three major approaches to randomness are through statistical tests, com-
pression, and betting.

Definition 1.1. A Martin-Löf test is a sequence {Ui}i∈ω of uniformly c.e. open
classes (uniformly Σ0

1 classes) such that µ(Ui) ≤ 2−i for all i.
A real X passes the test if X /∈

⋂
i Ui.

There is a universal Martin-Löf test, a {Ui} such that X passes {Ui} if and only
if it passes all Martin-Löf tests.

Definition 1.2. A set of strings {σi}i∈I is prefix-free if σi ⊆ σj implies σi = σj .
A Turing machine if prefix-free if its domain is.

There is a universal prefix-free Turing machine: one that can simulate all other
prefix-free machines.

Definition 1.3. The prefix-free Kolmogorov complexity of a finite string σ relative
to machine M is KM (σ) = min{|p| : M(p) = σ}.

The prefix-free complexity of σ is K(σ) = KU (σ), where U is a universal prefix-
free Turing machine.

If we do not require the machines be prefix-free, but allow arbitrary Turing
machines, we obtain analogously the concept of plain Kolmogorov complexity, C(σ).

Definition 1.4. A martingale is a function d : 2<ω → [0,∞) such that for all
σ ∈ 2<ω, d(σ) = 1

2 (d(σ0) + d(σ1)). That is, it represents fair double-or-nothing
betting on the bits of a string.

The martingale d succeeds on an infinite string X if lim supn→∞ d(X � n) = ∞.

Definition 1.5. A martingale is computably enumerable (constructive, effective)
if it is lower semi-computable (effectively approximable from below); that is, there
is a computable function d̂ : 2<ω × ω → [0,∞) such that for all σ ∈ 2<ω, t ∈ ω,
d̂(σ, t) ≤ d̂(σ, t + 1) < d(σ) and limt→∞ d̂(σ, t) = d(σ).

There is a universal c.e. martingale, just as with Martin-Löf tests. However,
there is no optimal martingale; that is, c.e. f such that for each c.e. martingale g,
(∃c)(∀σ)[cf(σ) ≥ g(σ)]. To obtain an optimal (universal) betting strategy requires
we use supermartingales, for which Definitions 1.4 and 1.5 carry over but with the
inequality d(σ) ≥ 1

2 (d(σ0) + d(σ1)) in place of the equality in 1.4. In terms of
defining randomness, supermartingales are equivalent to martingales.

Definition 1.6. To say a real X is 1-random means it has the following equivalent
characteristics:

(i) X passes the universal Martin-Löf test.
(ii) (∃c)(∀n)[K(X � n) ≥ n− c].
(iii) The universal c.e. (super-)martingale does not succeed on X.

1-random is also commonly called ML-random.

“Random” used without qualification means 1-random.
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2. Effective Dimension

The problems in this section deal with effectivizations of Hausdorff and packing
dimension. To define classical Hausdorff dimension, dimH , for a set X, let Aδ be
the collection of all sequences {Ai} that cover X by balls of diameter ≤ δ. The
Hausdorff outer measure of dimension s is

Hs(X) = lim
δ→0

(
inf

{Ai}∈Aδ

{ ∞∑
i=1

diam(Ai)s

})
.

Hs(X) will be ∞ for lower values of s and 0 for higher, with at most one point in
between which is neither 0 nor ∞. The location of that change is the Hausdorff
dimension of X: dimH(X) = inf{s : Hs(X) = 0} = sup{s : Hs(X) = ∞}.

Classical packing dimension, dimp, is dual to Hausdorff dimension. Instead of
covering X by balls of a given radius we pack it with disjoint balls of that radius. An
extra step must be taken in creating the outer measure, but once that is established
the definition of dimension from the measure is the same.

Three books are suggested reading: Hausdorff Measures by C.A. Rogers, Fractal
Geometry by K. Falconer, and Geometry of Sets and Measures in Euclidean Space
by P. Mattila.

Definition 2.1. An s-gale is a function d : Σ∗ → [0,∞) such that for all w ∈ Σ∗,

d(w)µ(w)s =
∑
a∈Σ

d(wa)µ(wa)s,

where µ(w) = |Σ|−|w| and wa is w concatenated with a.

A martingale is thus a 1-gale over the alphabet {0, 1}. Constructive s-gales are
defined just as for martingales.

Definition 2.2. The s-gale d succeeds on a string X, denoted X ∈ S∞[d], if

lim sup
n→∞

d(X � n) = ∞.

It succeeds strongly, X ∈ S∞str[d], if lim sup above may be replaced by lim inf.

The dimension of a string is a measure of the most hostile environment (least s)
in which an s-gale succeeds on the string.

Definition 2.3. The constructive dimension of a sequence X ∈ Σ∞ is

cdim(X) = inf{s : ∃ a constructive s-gale d such that X ⊆ S∞[d]}.

The constructive strong dimension of X is

cDim(X) = inf{s : ∃ a constructive s-gale d such that X ⊆ S∞str[d]}.

Constructive dimension is an effectivization of Hausdorff dimension, and is also
referred to as effective dimension or effective Hausdorff dimension. Constructive
strong dimension is an effectivization of packing dimension.

The first question about effectivized dimension is its relationship to the classical
version. Lutz uses the term correspondence principle for an effective dimension
theorem defining a class of examples on which constructive measure coincides with
classical measure. Hitchcock (2002) proved that if X ⊆ Σ∞, Σ a finite alphabet, is
a (not necessarily effective) union of Π0

1 classes, then cdim(X) = dimH(X).
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Problem 2.4. (Lutz.) What is the correspondence principle for constructive strong
dimension, cDim?

Problem 2.4 is one of a family of similar problems. We may generalize s-gales
to ν-s-gales, where the metric induced by the uniform probability measure µ on
Σ∗ is replaced by the metric induced by any strongly positive (Borel) probability
measure ν : Σ∗ → [0, 1] (Lutz and Mayordomo, 2006). The dimensions cdimν and
cDimν are then defined in the natural way. What correspondence principles may
be obtained in the general situation?

A different generalization would be the following.

Problem 2.5. (Reimann.) Viewing constructive dimension as an effectivization of
Hausdorff dimension, we might refer to it as Σ0

1-H-dim. Can we make a productive
definition for Σ0

n-H-dim?

Computable reals all have constructive dimension 0, and random reals have
constructive dimension 1. J. Miller conjectures the following questions about reals
of dimension > 0 all have negative answers.

Problem 2.6. (1) If cdim(X) > 0, does X compute a real of higher dimen-
sion? Arbitrarily high dimension < 1? Dimension 1?

(2) If cdim(X) > 0, does X compute a random real? If cdim(X) = 1?

Update. Bienvenu, Doty, and Stephan proved that for any A, if ε > 0 and
cDim(A) > 0, then A wtt-computes some B such that cdim(B) ≥ cdim(A)

cDim(A) − ε.
At the Sept 2007 workshop Joe Miller announced a negative answer to Problem
2.6: for all rational α ∈ (0, 1) there is a sequence A such that cdim(A) = α and for
all B ≤T A cdim(B) ≤ α. He believes his technique will work with modification
for irrational dimensions as well.

Define the dimension of a set of reals (e.g., a Turing degree) to be the supremum
of the dimensions of all reals in that set. In the wtt- (and hence tt-) degrees, there
is a degree of intermediate constructive dimension, strictly between 0 and 1.

Problem 2.7. (Reimann, Terwijn.) Is there a Turing degree of intermediate con-
structive dimension?

There are several examples of reals X of non-integer effective dimension whose
Turing lower cones {Y : Y ≤T X} have effective dimension 1. First, a Hölder
transformation of the Cantor set: Xr(m) = X(n) if m = bn/rc and 0 otherwise, for
some rational 0 < r < 1 and 1-random X. While cdim(Xr) = r, it is clear X may
be extracted from Xr, and hence Xr’s Turing lower cone has effective dimension 1.

Next, take X random with respect to the Bernoulli measure µp, bias p ∈ Q∩[0, 1].
In this case cdim(X) is the entropy of µp, H(µp) = −[p log p + (1 − p) log(1 −
p)] (where log is log2 in Cantor space). X computes a 1-random real Y by von
Neumann’s trick: take X two bits at a time, discard them if they are the same, and
add the first to the initial segment of Y if they are different.

Finally, alter Chaitin’s Ω by letting Ω(s) =
∑

σ∈dom(U) 2−|σ|/s, where U is a
universal prefix-free Turing machine and 0 < s ≤ 1 is a computable real. The
binary expansion of Ω(s) has effective dimension s. Ω(s) computes a fixed-point-
free real and is of c.e. degree, so by the Arslanov completeness criterion it is Turing
complete. Hence it is Turing-equivalent to a 1-random real.
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The last questions of this section relate to resource-bounded computation. NP
is the class of problems solvable in nondeterministic polynomial time.

Problem 2.8. (Lutz.) Is there an oracle relative to which NP has intermediate
dimension? I.e., is there an A such that 0 < dimpA(NPA) < 1?

There are many time- and space-bounded dimension notions; see the 2005 SIGACT
News survey by Hitchcock, Lutz, and Mayordomo. Kolmogorov complexity char-
acterizations have been found for cdim and dimpspace, though cdim is the only one
with a universal machine. There are also dimp (polynomial time) and dimFS (finite
state machines), among others.

Problem 2.9. (Mayordomo.) What are the Kolmogorov characterizations of the
remaining time- and space-bounded dimension notions? Is there a notion of uni-
versal machine?

3. K-trivial and almost complete reals

3.1. Characterizing K-trivials.

Definition 3.1. The real X is K-trivial if it has the lowest possible prefix-free
complexity: K(X � n) ≤ K(n) + c for all n.

It is known that noncomputable c.e. K-trivial reals exist, and that all are ∆0
2.

In fact, they form an ideal in the ∆0
2 Turing degrees that is equal to the downward

closure of the set of its c.e. members. K-triviality is equivalent to the notions low
for 1-random, base for 1-randomness, and low for K.

The following two questions are about characterizing the K-trivials. The first
is in terms of supermartingales; the role model is the characterization of the com-
putable sets as exactly those A such that

(3.1) ∃c∀n[M(A � n) > 2n−c],

where M is an optimal supermartingale.

Problem 3.2. (Stephan, Slaman.) Is there a (super-)martingale characterization
of K-triviality? In fact, is there any countable set or ideal characterizable in the
manner of Equation 3.1 other than the computable sets?

For the K-trivials, Stephan has attempted to obtain a bound of the form >
2n−f(n) for some f without success.

Hirschfeldt comments that although K-triviality is a robust concept, as shown
by the many equivalent characterizations, it does rely on the choice of prefix-free
Kolmogorov complexity. There are differences, at the level of log n, between Kol-
morogov complexity, martingales, and others. It is possible that studying this ques-
tion will aid in making fine distinctions between the compressibility and martingale
approaches.

Reverse mathematics is the program of classifying theorems of ordinary mathe-
matics according to the strength of the set-existence axioms required to prove them.
For more on reverse mathematics see Simpson’s book Subsystems of Second-Order
Arithmetic.

Problem 3.3. (Hirschfeldt.) Is there a reverse math characterization of the ideal
of K-trivials? For example, some axiom system such that the intersection of all the
ω-models of that system is exactly the K-trivials.
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3.2. K-trivials and Turing degrees. The first few problems in this section in-
volve locating the K-trivials in the Turing degrees. One positive result is that there
is a single Turing-incomplete low2 degree which is above all c.e. K-trivial A.

Problem 3.4. Is every K-trivial A below some incomplete 1-random?

If a set C is computable from both A and B, where A⊕B is random, then C is
K-trivial.

Problem 3.5. Is every K-trivial computable from both halves of some random
real?

Recall a Turing degree d is low if d′ = ∅′. A degree a is PA if it is the degree of
a complete extension of Peano arithmetic; equivalently, if for all partial computable
binary-valued functions f , a computes a binary-valued total extension of f .

Problem 3.6. (Kučera): Is there a single low PA degree that is above every K-
trivial?

Update. Kučera and Slaman have answered this affirmatively; a draft is available
at Slaman’s webpage.

Nies has shown no single low c.e. degree will work, but that there is a low2 c.e.
degree above all K-trivials. It would be equivalent to ask simply if there is a low
degree bounding all K-trivials, as existence of a low degree implies existence of a
low PA degree. Kučera and Slaman have a working version that the answer is yes.

For all ∆0
2 noncomputable B, there is some low A such that A ⊕ B ≡T ∅′. A

may be chosen 1-generic or PA, but Nies has shown that if B is K-trivial, A may
not always be chosen 1-random. We may consider the reverse direction.

Problem 3.7. (Kučera.) For which A is there a K-trivial B such that A ⊕ B is
complete?

The rest of the degree-theoretic problems in this section involve almost complete-
ness, a kind of co-triviality.

Definition 3.8. B is almost complete (or ∅′-trivializing) if ∅′ is K-trivial relative
to B.

An almost complete c.e. B <T ∅′ may be constructed using Jockusch-Shore
pseudojump inversion (Nies), but the construction is indirect and inflexible.

Problem 3.9. (Nies.) Is it possible to construct almost complete reals strictly
below ∅′ with upper cone avoidance (i.e., not above A for some given noncomputable
c.e. A)? Is there a minimal pair of (c.e.) almost complete degrees?

Regarding the latter, it is known there is a minimal pair of c.e. sets such that ∅′
is tt-below the jump of each of them (Shore, unpublished). One may also ask the
following:

Problem 3.10. Is there a minimal pair of (u.)a.e. dominating degrees?

A Turing degree a is almost everywhere dominating (a.e. dominating) if for
almost all X ∈ 2ω (with respect to the standard measure) and for all g : ω → ω
such that g ≤T X, there is a function f : ω → ω of degree a which dominates
g (i.e., on some infinite tail of the natural numbers f(n) > g(n)). The degree a
is uniformly almost everywhere dominating (u.a.e. dominating) if a single f works
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for almost every X and all g computable from those X. These two domination
properties are equivalent.

In the ∆0
2 degrees, (u.)a.e. domination is equivalent to almost completeness, but

in general domination is weaker, so 3.10 is a distinct question from part two of 3.9.

Problem 3.11. (Nies.) Is there a K-trivial c.e. set A and an almost complete
1-random Z such that A 6≤T Z?

Problem 3.12. Is every K-trivial Turing reducible to every ∆0
2 almost-complete

real?

For any incomplete ∆0
2 B there is an almost complete PA A which joins with B

to ∅′. This theorem fails if PA is replaced by 1-random.

Problem 3.13. (Kučera.) What is the connection between almost complete PA
and almost complete 1-random? That is, which almost complete PA degrees bound
almost complete 1-randoms, if any do? Given an almost complete 1-random, is
there an almost complete PA degree in the interval between the random and ∅′?

Kučera and Slaman have some results in this direction.

Problem 3.14. (Nies.) For a time bound g, say a polynomial, let Kg(x) be the
minimum length of a description σ such that the universal machine produces x from
input σ in no more than g(|x|) steps. Study Kg-triviality.

4. Computational power, halting probabilities, and relative
randomness

Problem 4.1. Thinking of a random sequence as the characteristic function of a
set, does every infinite subset of that set compute a random? Is there some random
sequence for which this is true?

The conjecture is no, but a positive result even for the restricted version might
have reverse mathematics content, such as showing the axiom system SRT2

2 (stable
Ramsey’s theorem for pairs and 2 colors) implies WWKL0 (weak weak König’s
lemma).

Call X complex (or a complex real) if K(X � n) ≥ h(n) for some computable,
unbounded, nondecreasing function h. It is known such reals exist, and known not
every complex real computes a random real. This is for unspecified h, however.
What happens when we look at specific h?

Problem 4.2. (Hirschfeldt, Reimann.) Is there a (computable,) unbounded func-
tion h such that K(X � n) ≥ n− h(n) implies X computes some 1-random real?

Likewise we can consider possible relationships between lower bounds.

Problem 4.3. (Reimann.) Suppose K(Y � n) ≥ g(n) for some appropriate g, and
X ≤T Y . How large can h be in the inequality K(X � n) ≥ h(x)?

We could also ask about particular functions h. For example, if X is such that
K(X � n) ≥ n − log log n, what can be said about X in terms of computational
power?

We say a real X is A-random, or random relative to A, if X passes all A-Martin-
Löf tests: tests where the sets are uniformly ΣA

1 .
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Problem 4.4. (Downey, Stephan.) Define the set RandA
B by

RandA
B = {X : X is A-random and X, B are a minimal pair in the T-degrees}.

For which pairs A,B does RandA
B satisfy the following generalization of van Lam-

balgen’s theorem?
Theorem. For all X, Y , the following are equivalent:

(i) X ⊕ Y ∈ RandA
B

(ii) X ∈ RandA
B and Y ∈ RandA⊕X

B⊕X

(iii) Y ∈ RandA
B and X ∈ RandA⊕Y

B⊕Y

The motivation behind this problem is that when B is ∅′ and A is ∅, RandA
B is

the set of weakly 2-random reals.

Definition 4.5. An Ω-number is a real that is 1-random and left-c.e.; each is the
halting probability of some universal prefix-free Turing machine.

A is strong weak truth table reducible (sw-reducible) to B, A ≤sw B, if there is
a functional Γ such that ΓB = A and the use of ΓB(n) is bounded by n +O(1).

Problem 4.6. Are there Ω-numbers Ω0 and Ω1 such that one is strictly tt-below
the other? sw-below? It is known that a tt-incomparable pair exist.

Let the probability of a universal machine U halting with output in some set
X ⊆ 2<ω be

ΩU [X] =
∑

p ∈ dom(U)
U(p) ∈ X

2−|p|.

It is known that if X is c.e. and infinite, ΩU [X] is an Ω-number (in particular,
random), but if X is allowed to be ∆0

2, ΩU [X] can be rational – in fact, for any
universal machine U and n ∈ ω, there is some X ≤T ∅′ such that ΩU [X] = 1

n .

Problem 4.7. (Becher, Figueira, Grigorieff, Miller.) What are the possible values
of ΩU [X] for, say, co-c.e. X?

Figueira, Stephan, and Wu have constructed a particular universal machine U
and co-c.e. X such that ΩU [X] is nonrandom. One improvement gives that for all
sufficiently small K-trivial numbers R there is a co-c.e. set X with ΩU [X] = R for
this U . What happens with arbitrary universal machines is open, however.

The particular U constructed by Figueira, Stephan, and Wu is not made universal
by adjunction (coding all Turing machines into it), it is universal by virtue of
generating K(x) up to a constant for all x. Any Turing machine U which is universal
by adjunction has the property that ΩU [{x}] is ML-random.

A different approach to halting probabilities gives the following result.

Theorem 4.8 (Becher/Grigorieff). Let A ⊂ P(N), and let U : 2ω → P(N) be uni-
versal, effective, and continuous. If U−1(A) is Σ0

n(2ω) and A is effectively Wadge
hard with respect to the class Σ0

n(2ω), then Ω[A] is n-random.

Here “universal” means the function can simulate any other function, effective
and continuous means U(α) = limn→∞ f(α � n) for f a recursive function from
finite strings to finite subsets of N, and Ω[A] = µ(U−1(A)) where µ is Lebesgue
measure. Note this is distinct from the previous definitions of Ω; here we must
consider infinite computations because A is a subset of P(N).
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A is effectively Wadge hard with respect to C if and only if ∀B ∈ C ∃F : C → P(N)
such that F is effectively continuous and F−1(A) = B.

The distinction between 2ω and P(N) is topological; P(N) may be replaced with
more general spaces. The topology on P(N) is the upper cone or spectral topology,
generated by all BA = {B ∈ P(N) : B ⊇ A} where A is finite.

Problem 4.9. (Becher.) Does the converse to Theorem 4.8 hold?

The conjecture is yes, though it may be required that “Ω[A] is n-left-c.e.” be
explicitly added to the conclusion of the theorem. It is open even for n = 1. A
subsidiary question is to find some A such that the hypothesis of the theorem holds;
any A containing the cofinite sets will do.

The theorem also holds if effectively Wadge hard is replaced by measure Wadge
hard, where F−1(A) = B in the definition of effectively Wadge hard is relaxed to
µ(F−1(A)) = µ(B).

Problem 4.10. Does the (weaker) converse of this theorem hold even if the con-
verse of the original theorem does not?

5. Reducibilities

To compare the initial segment complexity of different reals, we define K-reduction:
A ≤K B means K(A � n) ≤ K(B � n) + c. C-reduction is defined in the same way,
with plain complexity in place of K. A slightly different approach gives relative
K-reduction: A ≤rK B means (∃c)K(A � n|B � n) ≤ c.

We know every real is computable from a 1-random real (Kučera-Gács), and that
this is in fact a wtt-reduction with low use (Gács), but not just use = n. Hence the
following remains open.

Problem 5.1. Is every real K-reducible to a 1-random? C-reducible? rK-reducible?

The last question can be seen as a nonuniform version of the same question for
≤sw (where Hirschfeldt has shown it fails) by thinking of it as a wtt reduction with
bound n, plus finitely-much advice (the constant c).

Definition 5.2. B is low for random relative to A, B ≤LR A, if all Z that are
A-random are also B-random.

Problem 5.3. (Nies.) Are the c.e. LR-degrees dense? What other properties do
they have, in comparison to the c.e. Turing degrees?

The first question below is a version of the “hungry sets” theorem that shows
every base for 1-randomness is K-trivial; this has ≤LR in place of ≤ T .

Problem 5.4. (Simpson.) If A ≤LR B and B is random relative to A, does it
follow that B must be K-trivial? Alternatively, if A⊕B ≤LR B (meaning A is K-
trivial in B) and B is A-random, is A necessarily K-trivial? Is it possible conversely
to characterize LR-reduction in terms of relative K-triviality?

Problem 5.5. If A is random, A ≤LR B, and B is C-random, does this imply that
A is C-random?
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6. Other kinds of randomness

The major open problem in this area is:

Problem 6.1. Is Kolmogorov-Loveland randomness equivalent to Martin-Löf ran-
domness?

ML-random reals defeat all c.e. monotonic betting strategies; KL-random reals
defeat all computable nonmonotonic betting strategies. The next position bet on by
a nonmonotonic strategy is determined by the results of bets placed thus far. It is
important to note these nonmonotonic strategies may be partial; if they are required
to be total they have no more power than computable monotonic strategies. The
partiality may be in either of two senses: the martingale is not required to converge
on all reals, or it is not required to consider all positions of reals on which it does
converge. Either sense of partiality is sufficient.

It is known that KL-randomness is strictly stronger than computable randomness
(defeating all computable martingales), and implied by 1-randomness. It is also
known that no nonmonotonic partial computable strategy can succeed on all c.e.
sets, because a set may be enumerated specifically to fail. However, there are pairs
of such strategies such that the union of their success sets contains all c.e. sets.

Easier versions of this question may be found in Miller-Nies. For example, a per-
mutation random real defeats nonmonotonic martingales for which the order of the
positions to be checked is specified in advance. This seems a much weaker concept
of randomness, and yet it has not been separated from Martin-Löf randomness.

Problem 6.2. Is permutation randomness equivalent to ML-randomness?

Update. Kastermans and Lempp have announced a negative answer to this ques-
tion, presented by Kastermans at the Sept 2007 Chicago workshop.

Problem 6.3. Is ML-randomness equivalent to KL-randomness on the left-c.e.
reals?

Kolmogorov-Loveland stochasticity also uses nonmonotonicity, but instead of bet-
ting on the value of the bit in a given location, we choose whether to include it
in a subsequence or not. To be KL-stochastic, then, is to have the property that
every infinite subsequence selected by a computable rule has limiting frequency of
1s equal to 1

2 . Shen proved KL-stochasticity does not imply ML-randomness, and
that ML-random implies KL-stochastic is clear.

Problem 6.4. (Reimann.) Find an explicit construction of a KL-stochastic se-
quence.

Problem 6.5. Let RC be the set of strings which are random with respect to plain
complexity: {σ : C(σ) ≥ |σ|}. Is ∅′ tt-reducible to RC in polynomial time?

The conjecture is no, that there should even be computable sets that are not
poly-time tt-reducible to RC, although without the stipulation of polynomial time,
the answer is yes (Kummer). The tt-reduction is not an obvious one, though, and
this question could in fact depend on the particular representative of ∅′ chosen.

Recall computable randomness is the notion that no computable martingale suc-
ceeds on X; it is strictly weaker than 1-randomness. Schnorr randomness is ran-
domness relative to the set of Martin-Löf tests where the measure of the nth set is
exactly 2−n rather than just bounded by 2−n. It is strictly weaker than computable
randomness. The first of the following questions is prerequisite to the second.
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Problem 6.6. (Franklin.) Is there a machine characterization of computable ran-
domness (i.e., in terms of computational complexity)? Is there a notion of triviality
for computable randomness?

The set A is a base for a notion R of randomness if there is some B ≥T A such
that B is R-random relative to A.

Problem 6.7. What are the bases for Schnorr randomness? Computable random-
ness?

For computable randomness, the set of bases includes all non-DNC ∆0
2 sets,

and does not include any set of PA degree (Hirschfeldt, Nies, Stephan: “Using
random sets as oracles”). As a corollary this shows among the n-c.e. sets, the bases
for computable randomness are exactly the Turing incomplete sets. Any base for
computable randomness is a base for Schnorr randomness, so Schnorr bases exist.

Let the set NCRn consist of all reals X such that there is no continuous measure
with respect to which X is n-random. No characterization is known for NCRn for
any n. For n = 1, it is known that NCR1 ⊂ ∆1

1. Also, if P is a countable Π0
1 class,

P ⊆ NCR1 (Kjos-Hanssen, Montalban).

Problem 6.8. (Reimann, Slaman.) Does membership in countable Π0
1 classes

characterize the elements of NCR1?

Problem 6.9. Investigate the analogues to NCRn when the measure is allowed
to be discontinuous, perhaps with restrictions placing it between “continuous” and
“arbitrary”.

Finally, a semi-philosophical question. The fact that reals like Chaitin’s Ω are
1-random make a case for saying 1-randomness is not strong enough to give truly
random behavior. This problem disappears at the level of 2-randomness, and pos-
sibly even just at weak 2-randomness. In fact, recent results by Stephan indicate
a large divide between 1-randoms Turing above ∅′ and not, perhaps allowing us to
rescue a subset of 1-randomness as the level of true randomness.

Problem 6.10. (Hirschfeldt.) Provide more evidence (mathematical or founda-
tional) for distinguishing some level of randomness as the one at which “truly
random” behavior begins.

7. Trees and functions

7.1. Mass problems and randomness.

Definition 7.1. A Π0
1 class is the collection of infinite paths through some subtree

of 2<ω that is computable as a set of finite strings.

A mass problem is simply a collection of sets, often a Π0
1 class. If P and Q are

mass problems, P is weakly reducible (or Muchnik reducible) to Q if every member
of Q Turing computes a member of P by some Turing functional. P is strongly
(or Medvedev) reducible to Q if every member of Q computes a member of P via
the same Turing functional. Each notion induces a degree structure of equivalence
classes. The countable distributive lattice Pw is the lattice of weak degrees of mass
problems given by nonempty Π0

1 classes.
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Several examples of intermediate degrees in Pw are obtained from randomness.
The degree of the infimum of the class of 2-randoms and ∅′, inf(r2, ∅′), is also the
maximum weak degree of Π0

1 classes with Turing upward closure of positive measure.
The degree of the class of 1-randoms, r1 is also the maximum weak degree of Π0

1

sets which themselves have positive measure.

Problem 7.2. (Simpson.) Are more examples obtainable by replacing measure
with classical Hausdorff dimension or constructive dimension? For example, among
all weak degrees of (Turing upward closures of) Π0

1 classes of positive dimension, is
there a largest?

If more weak degree examples may be obtained, what are the relationships among
them and between them and previously-known examples?

Problem 7.3. (Simpson.) Define Ps as {X : dim(X) = s}, or with > s or ≥ s.
The weak degree of Ps is in Pw. Are these degrees the same as random? If not,
what are they?

A Π0
1 class P is thin if every Π0

1 subclass of P is relatively clopen; that is, there
is some Q that is both closed and open so that the subclass is P ∩Q. P is perfect
if it has no isolated paths; that is, every node is extended by a branching node.
Perfect thin Π0

1 classes have measure 0, and Binns has shown they have classical
Hausdorff dimension 0.

Problem 7.4. (Simpson.) Do perfect thin Π0
1 classes have effective dimension 0?

After the workshop Binns answered this question in the affirmative.

7.2. Random closed sets. By closed set we mean a subtree of 2ω, not restricting
to Π0

1 classes. Cenzer defined a coding on closed sets as follows: the code will be
an element of 3ω. The bits correspond to the nodes of the tree in lexicographical
order, omitting those which are not part of any path of the closed set. The bit
corresponding to node σ in the code is 0 or 1 if only σ0 or σ1, respectively, is in
the tree. It is 2 if both σ0, σ1 are in the tree. Randomness is then defined just as
with Martin-Löf, with a “three-headed coin” probability measure: each of 0, 1, 2
has probability 1

3 .
It is known that a random closed set can contain no computable member, and

that it may contain a ∆0
2 member.

Problem 7.5. (Cenzer, Kjos-Hanssen.) Can a random closed set have a c.e. mem-
ber? d.c.e.? n-c.e.?

Update. Barmpalias, Brodhead, Cenzer, Dashti, and Weber have shown no ran-
dom closed set can have an f -c.e. member for any computable f bounded by a
polynomial. (Algorithmic randomness of closed sets, Journal for Logic and Com-
putation, to appear.)

Problem 7.6. What is the Medvedev or Muchnik degree of a random closed set?

Problem 7.7. If Q ⊆ 2ω is a random closed set, what is the effective Hausdorff
dimension of Q? Of its paths? Are they greater than 0?

7.3. Random continuous functions. A continuous function F : 2ω → 2ω (i.e.,
one with a closed graph) may be represented by a function f : 2<ω → 2<ω such
that for all σ ∈ 2<ω,
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(i) |f(σ)| ≤ |σ|, f(σ_i) ≤ f(σ) + 1,
(ii) σ1 ⊂ σ2 ⇒ f(σ1) ⊂ f(σ2),
(iii) for every n there is m such that for all σ of length m, |f(σ)| ≥ n, and
(iv) for all X ∈ 2ω, F (X) =

⋃
n f(X � n).

Note that a single function F will have many representations f , because addi-
tional 2s slow the convergence of the image but leave the function unchanged. The
canonical representation is that for which the most information available at any
given length is used, while preserving the conditions above. Therefore a canonical
representing function f would not be able to have, e.g., f(σ) = f(σ_1) only to
have f(σ_10) = f(σ_11) = f(σ_1)_1. The 1 would be required at the f(σ_1)
level.

Once this f is defined, we code it similarly to a closed set. For the bit representing
σ_i, the three outcomes here are 2: f(σ_i) = f(σ); 1, 0: f(σ_i) = f(σ)_1 or
f(σ)_0. Each is assigned probability 1

3 and randomness is defined à la Martin-Löf.
Kjos-Hanssen sketched a proof that the value of a random continuous function

at a computable point will be random, which has since been developed into a
full proof. He claimed that an analogous result would hold for Asarin-Pokrovskiy
random Brownian motions, discussed below.

Problem 7.8. (Becher.) When is the composition of two continuous random func-
tions random?

Problem 7.9. (Becher.) Is there a notion of triviality? If so, what happens when
a random function is composed with a trivial one?

Problem 7.10. (Becher.) What geometric operations can be devised that preserve
randomness?

Cenzer’s notion of random continuous function differs from Brownian motion,
in that he considers functions only from [0, 1] to [0, 1], whereas Brownian motion
on [0, 1] will with positive probability move outside of any compact interval. The
literature provides two equivalent notions of randomness for Brownian motion, one
due to Asarin and Pokrovskiy, 1986, and one to Fouché, 2000. For definitions
and proof of their equivalence one can consult the 1986 paper in Automation and
Remote Control 47, 21–28.

Problem 7.11. The Asarin-Pokrovskiy definitions codes functions non-uniquely.
Are all codes for a given function of the same or similar Kolmogorov complexity?
Could a random function have a K-trivial representation?

Problem 7.12. (Becher.) Is there some specific example of a random Brownian
motion?

8. Computation and information theory

The problem of computation in the presence of random noise may be solved by
replacing every bit of the tape of a Turing machine by a finite automaton, where cor-
responding cells of the automata perform independent Turing computation steps,
and then each automaton performs an error-correcting step. The consensus among
varying cell-tracks will be the correct answer with probability 1. However, this is
usually paid for by a blowup in computation time and space. Gács produced an
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efficient, reliable machine using one-dimensional automata, but it is highly com-
plicated and difficult to understand. Levin (et al) produced a one-dimensional
automaton which appears to correct for symmetric constant noise under 20%, but
it has not been proven to do so. Asymmetric noise, however, will certainly destroy
the information.

Problem 8.1. (Levin.) Find a simple automaton which, like Gács’, can maintain
its information despite even asymmetric noise.

Mutual information for finite strings x, y is defined as

I(x : y) = K(x) + K(y)−K(x, y) = log
m(x, y)

m(x)m(y)
,

where m is the universal probability measure. There are several proposed definitions
for mutual information for infinite strings. For example, a straightforward analogue
of the finite definition would be

(8.1) I(α : β) = log
∑
x,y

m(x|α)m(y|β)
m(x, y)

m(x)m(y)
.

As an aside, it may be that we can restrict to x = y in (8.1). If allowing x 6= y
is not necessary the definition would be simplified quite a bit.

Problem 8.2. (Levin.) Taking the definition of mutual information as (8.1), is it
the case that I(A : A) < ∞ implies A is K-trivial?

The converse is true, because A K-trivial implies m(x|A) ≈ m(x), so what
remains is log

∑
x,y m(x, y), which converges. This question relates to the following:

Problem 8.3. (Levin.) Which definition of mutual information for infinite strings
is the “right” one?

We may look for correspondence to other “natural” properties; for instance, we
may require that finite mutual information with oneself under that definition of I
implies K-triviality. I(A : B) < ∞ implying A,B form a minimal pair in the LR
or LK degrees would also be good evidence that I is the right I.


