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Almost Connected Groups and the Baum-Connes
Conjecture

I G : locally compact, second-countable group

I Ge : connected component of the identity e ∈ G .

I Suppose that G is almost connected, i.e. G/Ge is compact.

I K : maximal compact subgroup of G .

I G/K is a universal example for proper actions of G .

I Theorem (Chabert-Echterhoff-Nest, 03)

The Baum-Connes assembly map

µ : KG
∗ (G/K )→ K∗(C

∗
λ(G ))

is an isomorphism.



Connected Lie Groups and the Baum-Connes Conjecture

I G : connected Lie group.

I µ can be defined using “Dirac induction” from K (Kasparov).

I In this setting, Baum-Connes conjecture (without coefficients)
known as Connes-Kasparov conjecture.

I Progress in the early-mid 80’s:
I Simply connected solvable groups (Connes).
I Nilpotent groups (Rosenberg).
I Amenable groups (Kasparov).
I Complex semisimple groups (Pennington and Plymen).
I Linear reductive groups (Wassermann).

I Latter two cases make use of detailed representation theory.



Continuous Fields and the Baum-Connes Conjecture

I G : almost connected Lie group (G/Ge finite)

I G/K ∼= g/k, the quotient of the Lie algebras of G and K .

I Domain of assembly map identifies with K∗(K n g/k)
(Green-Julg, Kasparov).

I Smooth one-paramter family of Lie groups (Lie groupoid)

Gt =

{
K n g/k if t = 0

G if t 6= 0.

I Continuous field of C ∗-algebras {C ∗λ(Gt)}t∈[0,1] produces an
“asymptotic” assembly map

µ0 : K∗(C
∗(G0))→ K∗(C

∗
λ(G )).

I Noted in Baum-Connes-Higson paper and proved in Connes’
book (94):

µ is an isomorphism ⇐⇒ µ0 is an isomorphism.



The Mackey Analogy

I G : connected semisimple Lie group (finite center).

I G0 = K n g/k known as a Cartan motion group.
I E.g. G = SL(n,F), F ∈ {R,C}

I G0 = K n p, where

p = {A ∈ Mn(F)|A∗ = A, tr(A) = 0}

and K is SO(n) or SU(n) acting by matrix conjugation.

Proposal (Mackey, 75)

There ought to be a “natural” correspondence between almost all
irreducible tempered representations of G and almost all irreducible
unitary representations of G0:

Ĝλ ←→ Ĝ0 a.e. Plancherel.



The Mackey Analogy

II According to the “Mackey machine,” the unitary dual of any
semidirect product K n A with K compact and A locally
compact abelian is parametrized by:

I characters χ : A→ T of A.
I irreducible representations of the isotropy subgroups Kχ ⊆ K .

I G : connected complex semisimple Lie group (e.g. SL(n,C)).
I The tempered (reduced unitary) dual of G is parametrized by:

I characters of the Borel subgroup B (e.g. upper ∆ matrices).

I Higson observed that for G0 = K n p, each Kχ is connected.
Consequently, there is a canonical bijection

Φ : Ĝλ
∼=−→ Ĝ0.

I Φ is not a homeomorphism.



Higson’s Analysis

I Each π ∈ Ĝλ ∪ Ĝ0 contains a unique τ ∈ K̂ satisfying a
minimality condition a la Vogan.

I Φ preserves these minimal K -types.

I Each τ gives rise to a subquotient of C ∗λ(G ) and of C ∗(G0).

I Theorem (Higson, 06)

The above subquotients are Morita equivalent; in fact, to the same
commutative C ∗-algebra.

I Thus Ĝλ and Ĝ0 can be partitioned into homeomorphic
(locally closed) subsets.

I An elaboration of this analysis to the continuous field
{C ∗λ(Gt)}t∈[0,1] establishes, using nothing more K -theoretic
than Bott periodicity, that

µ0 : K∗(C
∗(G0))→ K∗(C

∗
λ(G ))

is an isomorphism.



The Almost Connected Case

I Consider an extension of groups

1→ G → G → F → 1

in which G is connected complex semisimple and F is finite.

I So G has |F | connected components and identity component
G , but needn’t be a complex Lie group.

I There are maximal compact subgroups satisfying

1→ K → K → F → 1.

I Thus with G0 = K n g/k and G0 = K n g/k we have

1→ G0 → G0 → F → 1.

I F acts on Ĝλ, Ĝ0 and K̂ .



The Almost Connected Case

I We have a commutative diagram

Ĝλ

τ
��>>>>>>> ∼=

Φ // Ĝ0

τ0
���������

K̂

in which τ and τ0 are maps assigning minimal K -types.

I Proposition

The above diagram is F -equivariant.

I A general version of the Mackey machine yields a bijection

Φ̃ : Ĝλ
∼=−→ Ĝ0

such that π ∈ Ĝλ occurs in π̃|G ⇐⇒ Φ(π) occurs in Φ̃(π̃)|G0 .



Twisted Crossed Products

I G : locally compact group, C : C ∗-algebra.

I α : G → Aut(C ) continuous action
I (Green, 78) A twisting map for α is a (strongly) continuous

homomorphism σ : N → UM(C ), where N is a closed normal
subgroup of G , satisfying:

1. αn(c) = σ(n)cσ(n)∗ ∀ n ∈ N, c ∈ C .
2. σ(gng−1) = αg [σ(n)] ∀ g ∈ G , n ∈ N.

I Call (α, σ) a twisted action of G/N:
I Ordinary action of G/N lifts to a twisted action of G/N whose

twisting map is trivial.

I A covariant representation (U, π) of (G ,C ) preserves σ if

π(σ(n)) = Un ∀ n ∈ N.



Twisted Crossed Products

I The twisted crossed product C ∗-algebra

(G ,N) nα,σ C .

is the quotient of the ordinary crossed product G nα C by the
ideal corresponding to σ-preserving representations.

I Completion of functions G → A such that

f (ng) = f (g)σ(n)∗ ∀ g ∈ G , n ∈ N,

with operations defined using G/N in place of G .

I If twisting map is trivial, then (G ,N) n C ∼= G/N n C .

I If G ′/N ′
∼=−→ G/N, then restriction yields

(G ,N) n C
∼=−→ (G ′,N ′) n C .

I In particular, (G ,N) n C ∼= G/N n C when G ∼= G/N n N.



Twisted Crossed Products: Fundamental Example

I Assume for simplicity that G and N are unimodular.

I Twisted action of G/N on C ∗(N) given by

[αg (f )](n) = f (g−1ng)

[σ(n′)f ](n) = f (n′−1n)

for all g ∈ G , f ∈ Cc(N), and n, n′ ∈ N.

I Associating to each f ∈ Cc(G ) f̃ : G → Cc(N) defined by

[f̃ (g)](n) = f (ng) ∀ g ∈ G , n ∈ N.

yields an isomorphism

C ∗(G )
∼=−→ (G ,N) n C ∗(N).



Back to the Almost Connected Case

I G: finite extension of connected complex semisimple group G .

I K ⊆ K maximal compact subgroups.

I C ∗λ(G) ∼= (K,K ) n C ∗λ(G ), C ∗(G0) ∼= (K,K ) n C ∗(G0).

I C0(Xτ ), τ ∈ K̂ : Higson’s commutative C ∗-algebras from the
connected case.

I To each K/K -orbit O ⊆ K̂ is associated a subquotient of
C ∗λ(G) and of C ∗(G0).

I Theorem
The above subquotients are Morita equivalent to a twisted crossed
product

(K,K ) n
⊕
τ∈O

C0(Xτ ,End(Vτ )).

I Corollary

µ0 : K∗(C
∗(G0))→ K∗(C

∗
λ(G)) is an isomorphism.



Other Classes of Lie groups?

I Theorem (George, 09)

There exists a bijection
Ĝλ ∼= Ĝ0

for G = SL(n,R) that preserves minimal K-types.

I For more on real reductive groups, ask Nigel.

I Question: Can one prove Baum-Connes for simply connected
nilpotent groups using Kirilov’s orbit method?

I If G is (finite extension of) connected complex semisimple,
SL(n,R), or simply connected nilpotent, we have a bijection

Ĝλ ∼= Ĝ0/NG (K ).

I In the semisimple case, NG (K ) = K acts trivially on Ĝ0.

I In the nilpotent case, K = {e} so NG (K ) = G and Ĝ0
∼= g∗.



Appendix A: Higson’s Bijection

I Ĝλ ∼= Ĥ/W where H ⊆ B is a Cartan subgroup of G .

I H = MA where A = exp(a), a is a maximal abelian subspace
of p, M = ZK (A) is a maximal torus in K , and
W = NK (A)/M is the Weyl group of G .

I p = a⊕ a⊥: M-invariant decomposition.

I ∀ ϕ ∈ Â ∼= a∗, ∃ w ∈W such that w · ϕ is trivial on a⊥.

I Kw ·ϕ ⊆ K is connected with maximal torus M and Weyl
group Wϕ ⊆W .

I The map

IndG
B σ ⊗ ϕ 7→ IndG0

Kw·ϕnp τσ ⊗ (w · ϕ)

where τσ ∈ K̂w ·ϕ has highest weight σ establishes a bijection

Ĝλ
∼=−→ Ĝ0.



Appendix B: The Twisted Action

I For each [τ ] ∈ K̂ , choose a representative τ : K → U(Vτ ).

I Suppose y ∈ K is such that y · [τ ] = [τ ′].

I There exists a unitary operator Uy : Vτ → Vτ ′ unique up to a
factor in T satisfying

Uyτ(k)U∗y = τ ′(yky−1) ∀ k ∈ K .

I Given T ∈ End(Vτ ), let

y · T = UyTU∗y ∈ End(Vτ ′).

I Given f : Xτ → End(Vτ ), define

αy (f ) : Xτ ′ → End(Vτ ′)

[αy (f )](π) = y · f (y−1 · π) ∀ π ∈ Xτ ′ .



Appendix B: The Twisted Action

I Thus K acts via α on the C ∗-algebra direct sum⊕
τ∈O

C0(Xτ ,End(Vτ )).

I K acts on each summand by

[αk(f )](π) = τ(k)f (π)τ(k)∗.

I Hence σ(k)f = τ(k) ◦ f defines a twisting map, so that we
obtain a twisted action (α, σ) of K/K .


