	Alex H. Barnett	Center for	Computational Mathematics
			Flatiron Institute
			162 Fifth Avenue
Born: 7th Dec, 1972	email: abarnett at flatironinsti	tute.org	New York, NY, 10010
U.S. permanent resident	http://users.flatironinstitute.	org/ \sim ahb	(646) 876-5942

RESEARCH AREAS

- Computational partial differential equations: fluid flow (Stokes), wave scattering (Helmholtz and timedomain), periodic geometries, optics, heat equation, high-frequency eigenvalue problems.
- Numerical analysis and software libraries: fast algorithms, signal/image processing, boundary integral equations, quadratures, spectral methods.
- Computational biology (spike sorting, cryo-electron microscopy), inverse imaging problems (phase retrieval), quantum physics, statistical methods (sampling, spatial regression).
- Mathematical physics: quantum chaos. Mathematics of music, acoustics.

EDUCATION

Harvard University. Ph. D. in Physics: <i>Dissipation in Deforming Chaotic Billiards</i> Thesis advisor: Eric J. Heller	October 2000
Cambridge University, England. B. A. <i>(First class)</i> in Theoretical Physics Undergraduate thesis advisor: David J. C. MacKay	June 1994
POSITIONS	
Group Leader, Numerical Analysis. Center for Computational Mathematics, Flatiron In Foundation, New York, NY	nstitute, Simons 2018–present
Group Leader, Numerical Algorithms. Center for Computational Biology, Flatiron In Foundation, New York, NY	nstitute, Simons 2017–2018
Professor. Department of Mathematics, Dartmouth College, NH	2017
Senior Research Scientist. November 2014–August 2015; January–March 2016; Jan Flatiron Institute (formerly SCDA), Simons Foundation, New York, NY	nuary–May 2017
Adjunct Associate Professor. Department of Physics and Astronomy, Dartmouth College, NH	2013-2017
Associate Professor. Department of Mathematics, Dartmouth College, NH	2011 - 2017
Assistant Professor. Department of Mathematics, Dartmouth College, NH	2005-2011
Courant Instructor / Assistant Professor. Courant Institute of Mathematical Sciences, New York University, NY	2002-2005
Postdoctoral Research Fellow. Februa Photon Migration Imaging Laboratory, Dept. of Radiology, Harvard Medical School, Charle	ry–August 2002 estown, MA
Consultant. November-	-December 2000
Teaching Fellow / Head Teaching Fellow. Department of Physics, Harvard University, Cambridge, MA	1995–2001

FELLOWSHIPS AND AWARDS

• Best Paper Award, PDSEC21 (workshop of IPDPS), for "cuFINUFFT: a load-balanced GPU librar	y
for general-purpose nonuniform FFTs," YH. Shih, et al. 202	1
• C. Troy Shaver 1969 Fellow, Dartmouth College 201	7
• Office of Naval Research, N00014-17S-B001, award amount \$10,000 201	7
Funding support for Modern Advances in Computational and Applied Mathematics, Yale	
• National Science Foundation, Grant DMS-1347163, PI, award amount \$34,973 201	4
Funding support for CBMS Conference on Fast Direct Solvers for Elliptic PDEs	
• Neukom Institute CompX Faculty Grant, co-PI, award amount \$25,000 201	3
"Efficient numerical solution of electromagnetic scattering from periodic arrays of cylindrically sym	<i>L</i>
metric objects"	۲
• National Science Foundation, Grant DMS-1210656, PI, award amount \$180,000 2012–201	Э
"Next-generation integral equation methods for wave scattering and propagation in periodic structures"	;
• Elizabeth R. and Robert A. Jeffe 1972 Fellowship, Dartmouth College 201	1
• Karen E. Wetterhahn Memorial Award for Distinguished Creative or Scholarly Achievement,	
Dartmouth College 201	1
• Burke Initiation Award, Dartmouth College 201	1
• National Science Foundation, Grant DMS-1005360, co-PI, award amount \$42,355 201	0
Funding support for International Conference on Spectral Geometry	
• The Class of 1962 Faculty Fellowship, Dartmouth College 201	0
• National Science Foundation. Grant DMS-0811005. PI, award amount \$310.517 2008–201	1
"Efficient spectrally accurate global basis methods for high frequency wave scattering, eigenmodes and photonics"	3,
• National Science Foundation, Grant DMS-0507614, PL award amount \$102.520 2005–200	8
"High frequency cavity eigenmodes: rapid computation methods applications and asymptotics"	0
• Courant Instructorshin New York University 2002–200	5
• Harvard University Certificate of Distinction in Teaching Fall 1997 Spring 2001 and Fall 200	1
 Harold T White Prizes teaching introductory physics Harvard Physics Department 1996 and 199 	7
• Kennedy Scholarshin Kennedy Memorial Trust London	ι Λ
Hackin Prize Duchase of Somercet Scholarshine St. John's Collogo Combridge 1003 and 100	± 1
• Hockin Trize, Duchess of Somerset Scholarships, St John's Conege, Cambridge 1995 and 199	± ∩
• AAA mornational i hysics Olympiad, <i>First Frize</i> of 155 entrants, Groningen, The Netherlands 199	J

PUBLICATIONS

Journal publications:

- [69] "A fully adaptive, high-order, fast Poisson solver for complex two-dimensional geometries," D. Fortunato, D. B. Stein, and A. H. Barnett, *in draft* (2024).
- [68] "A superfast direct inversion method for the nonuniform discrete Fourier transform," H. Wilber, E. N. Epperley, and A. H. Barnett, *submitted*, *SIAM J. Sci. Comput.*, 26 pages (2024). math.NA:2404.13223
- [67] "Trapped acoustic waves and raindrops: high-order accurate integral equation method for localized excitation of a periodic staircase," F. J. Agocs and A. H. Barnett, *submitted*, J. Comput. Phys., 25 pages (2023). math.NA:2310.12486
- [66] "Efficient convergent boundary integral methods for slender bodies," D. Malhotra and A. H. Barnett, J. Comput. Phys. 503, 112855 (2024). (28 pages, math.NA:2310.00889)
- [65] "riccati: an adaptive, spectral solver for oscillatory ODEs," F. J. Agocs and A. H. Barnett, J. Open Source Softw. 8(86), 5430 (2023).
- [64] "Uniform approximation of common Gaussian process kernels using equispaced Fourier grids," A. H. Barnett, P. R. Greengard, and M. Rachh, in press, Appl. Comput. Harmonic Anal. (2024). 21 pages, math.NA:2305.11065

- [63] "An adaptive spectral method for oscillatory second-order linear ODEs with frequency-independent cost," F. J. Agocs and A. H. Barnett, SIAM J. Numer. Anal. 62(1) 295–321 (2024).
- [62] "Ensemble reweighting using cryo-EM particle images," W. S. Tang, D. Silva-Sánchez, J. Giraldo-Barreto, B. Carpenter, S. Hanson, A. H. Barnett, E. H. Thiede, and P. Cossio, J. Phys. Chem. B 127(24) 5410–5421 (2023).
- [61] "Automatic, high-order, and adaptive algorithms for Brillouin zone integration," J. Kaye, S. Beck, A. H. Barnett, L. Van Muñoz, and O. Parcollet, *SciPost Phys.* 15(2), 062 (2023).
- [60] "Equispaced Fourier representations for efficient Gaussian process regression from a billion data points," P. R. Greengard, M. Rachh, and A. H. Barnett, *submitted*, *SIAM/ASA J. Uncert. Quant.*, 27 pages (2023). stat.C0:2210.10210
- [59] "Eliminating artificial boundary conditions in time-dependent density functional theory using Fourier contour deformation," J. Kaye, A. H. Barnett, L. Greengard, U. De Giovannini, and A. Rubio, J. Chem. Theory Comput., 19(5), 1409–1420 (2023). arxiv:2209.11027
- [58] "Delayed rejection Hamiltonian Monte Carlo for sampling multiscale distributions," C. Modi, A. H. Barnett, and B. Carpenter. in press, Bayesian Anal. (28 pages), 2023. arxiv:2110.00610.
- [57] "Quadrature by fundamental solutions: kernel-independent layer potential evaluation for large collections of simple objects," D. B. Stein and A. H. Barnett. Adv. Comput. Math. 48, article 60 (41 pages), 2022. arxiv:2109.08802
- [56] "A Bayesian approach for extracting free energy profiles from cryo-electron microscopy experiments using a path collective variable," J. Giraldo-Barreto, S. Ortiz, E. H. Thiede, K. Palacio-Rodriguez, B. Carpenter, A. H. Barnett, and P. Cossio. Sci. Rep. 11, 13657 (16 pages), 2021. arxiv:2102.02077.
- [55] "cuFINUFFT: a load-balanced GPU library for general-purpose nonuniform FFTs," Y.-H. Shih, G. Wright, J. Andén, J. Blaschke, and A. H. Barnett, *PDSEC2021*. (10 pages). arxiv:2102.08463.
- [54] "Efficient high-order accurate Fresnel diffraction via areal quadrature and the nonuniform FFT," A. H. Barnett, J. Astron. Telesc. Instrum. Syst. 7(2), 021211 (21 pages), 2021. arxiv:2010.05978
- [53] "How exponentially ill-conditioned are contiguous submatrices of the Fourier matrix?", A. H. Barnett, SIAM Rev. 64(1), (24 pages), 2022. arxiv:2004.09643
- [52] "Recovering missing data in coherent diffraction imaging," D. Barmherzig, A. H. Barnett, C. L. Epstein, L. F. Greengard, J. F. Magland, and M. Rachh, SIAM J. Imaging Sci. 14(2), (18 pages), 2021. arxiv:2002.02874
- [51] "Aliasing error of the $\exp(\beta\sqrt{1-z^2})$ kernel in the nonuniform fast Fourier transform," A. H. Barnett, Appl. Comput. Harmon. Anal. **51**, 1–16 (2021). arxiv:2001.09405
- [50] "A high-order integral equation-based solver for the time-dependent Schrödinger equation," J. Kaye, A. H. Barnett, and L. Greengard, Comm. Pure Appl. Math. 75(8), 1657–1712 (2022). arxiv:2001.06113
- [49] "SpikeForest: reproducible web-facing ground-truth validation of automated neural spike sorters," J. F. Magland, J. J. Jun, E. Lovero, A. J. Morley, C. L. Hurwitz, A. P. Buccino, S. Garcia, and A. H. Barnett, *eLife*, 9:e55167 (2020). 23 pages.
- [48] "An integral equation method for the simulation of doubly-periodic suspensions of rigid bodies in a shearing viscous flow," J. Wang, E. Nazockdast, and A. H. Barnett, J. Comput. Phys. 424, 109809 (39 pages), 2021. arxiv:1912.04501
- [47] "Accurate quadrature of nearly singular line integrals in two and three dimensions by singularity swapping," L. af Klinteberg and A. H. Barnett, *BIT Numer. Math.* **61**, 83–118 (2021). arxiv:1910.09899
- [46] "Solution of Stokes flow in complex nonsmooth 2D geometries via a linear-scaling high-order adaptive integral equation scheme," B. Wu, H. Zhu, A. H. Barnett, and S. Veerapaneni, J. Comput. Phys. 410, 109361 (2020). 25 pages. arxiv:1909.00049

- [45] "Factorization of the translation kernel for fast rigid image alignment," A. Rangan, M. Spivak, J. Andén, and A. H. Barnett. Inverse Problems 36 (2), 024001 (2020). 30 pages. arxiv:1905.12317
- [44] "High-order discretization of a stable time-domain integral equation for 3D acoustic scattering," A. H. Barnett, L. Greengard, and T. Hagstrom, J. Comput. Phys. 402, 109047 (2020). 24 pages.
- [43] "Explicit unconditionally stable methods for the heat equation via potential theory," A. H. Barnett, C. L. Epstein, L. Greengard, S. Jiang, and J. Wang, *Pure Appl. Anal.* 1(4), 709–742, (2019).
- [42] "Geometry of the phase retrieval problem," A. H. Barnett, C. L. Epstein, L. F. Greengard, and J. Magland, *Inverse Problems* 36(9), 094003 (2020). arxiv:1808.10747v2
- [41] "A parallel non-uniform fast Fourier transform library based on an 'exponential of semicircle' kernel,"
 A. H. Barnett, J. Magland, and L. af Klinteberg. SIAM J. Sci. Comput. 41(5), C479–C504 (2019).
- [40] "High-density, long-lasting, and multi-region electrophysiological recordings using polymer electrode arrays," J. E. Chung, H. R. Joo, J. L. Fan, D. F. Liu, A. H. Barnett, S. Chen, S. Geaghan-Breiner, M. P. Karlsson, M. Karlsson, K. Y. Lee, H. Liang, J. F. Magland, A. C. Tooker, L. F. Greengard, V. M. Tolosa, L. M. Frank. *NEURON* 101(1), 21-31.e5 (2019).
- [39] "A fully automated approach to spike sorting," J. E. Chung, J. F. Magland, A. H. Barnett, V. M. Tolosa, A. C. Tooker, K. Y. Lee, K. G. Shah, S. H. Felix, L. M. Frank, L. F. Greengard. *NEURON* 95(6) 1381–1394 (2017).
- [38] "A unified integral equation scheme for doubly-periodic Laplace and Stokes boundary value problems in two dimensions," A. H. Barnett, G. Marple, S. Veerapaneni, and L. Zhao. Comm. Pure Appl. Math., 71(11), 2334–2380 (2018).
- [37] "Ubiquitous evaluation of layer potentials using quadrature by kernel-independent expansion," A. Rahimian, A. H. Barnett, and D. Zorin. BIT Numer. Math., 58(2), 423–456 (2018).
- [36] "Rapid solution of the cryo-EM reconstruction problem by frequency marching," A. H. Barnett, L. Greengard, A. Pataki, and M. Spivak. SIAM J. Imaging Sci., 10(3), 1170–1195 (2017).
- [35] "Comparable upper and lower bounds for boundary values of Neumann eigenfunctions and tight inclusion of eigenvalues," A. H. Barnett, A. Hassell, and M. Tacy, *Duke Math. J.*, 167(16), 3059–3114 (2018).
- [33] "A fast algorithm for simulating multiphase flows through periodic geometries of arbitrary shape," G. Marple, A. H. Barnett, A. Gillman, and S. Veerapaneni, SIAM J. Sci. Comput., 38(5), B740–B772 (2016).
- [32] "Efficient numerical solution of acoustic scattering from doubly-periodic arrays of axisymmetric objects," Y. Liu and A. H. Barnett, J. Comput. Phys., 324, 226-245 (2016).
- [31] "Validation of neural spike sorting algorithms without ground-truth information," A. H. Barnett, J. F. Magland, and L. Greengard, J. Neurosci. Meth., 264, 65–77 (2016)
- [30] "A fast and robust solver for the scattering from a layered periodic structure containing multi-particle inclusions," J. Lai, M. Kobayashi, and A. H. Barnett, J. Comput. Phys. 298, 194–208 (2015)
- [29] "Spectrally-accurate quadratures for evaluation of layer potentials close to the boundary for the 2D Stokes and Laplace equations," A. H. Barnett, B. Wu, and S. Veerapaneni, SIAM J. Sci. Comput. 37(4), B519–B542 (2015)
- [28] "High-order boundary integral equation solution of high frequency wave scattering from obstacles in an unbounded linearly stratified medium," A. H. Barnett, B. J. Nelson, and J. M. Mahoney, J. Comput. Phys. 297, 407–426 (2015)
- [27] "Robust and efficient solution of the drum problem via Nyström approximation of the Fredholm determinant," L. Zhao and A. H. Barnett, SIAM J. Numer. Anal. 53 (4), 1984–2007 (2015)
- [26] "Robust fast direct integral equation solver for quasi-periodic scattering problems with a large number of layers," M. H. Cho and A. H. Barnett, *Optics Express* 23(2), 1775–1799 (2015)

- [25] "A spectrally accurate direct solution technique for frequency-domain scattering problems with variable media," A. Gillman, A. H. Barnett, and P.G. Martinsson, *BIT Numer. Math.* 55(1), 141–170 (2015)
- [24] "Evaluation of layer potentials close to the boundary for Laplace and Helmholtz problems on analytic planar domains," A. H. Barnett, 22 pages, SIAM J. Sci. Comput. 36(2), A427–A451 (2014)
- [23] "High-order accurate Nyström discretization of integral equations with weakly singular kernels on smooth curves in the plane," S. Hao, A. H. Barnett, P. G. Martinsson, and P. Young, Adv. Comput. Math. 40 (1) 245–272 (2014)
- [22] "Fast computation of high frequency Dirichlet eigenmodes via the spectral flow of the interior Neumannto-Dirichlet map," A. H. Barnett and A. Hassell, Comm. Pure Appl. Math. 67(3), 351–407 (2014)
- [21] "A fast direct solver for quasiperiodic scattering problems," A. Gillman and A. H. Barnett, J. Comput. Phys. 248, 309–322 (2013)
- [20] "Quadrature by expansion: a new method for the evaluation of layer potentials," A. Klöckner, A. H. Barnett, L. Greengard, and M. O'Neil, J. Comput. Phys. 252, 332–349 (2013)
- [19] "Boundary quasi-orthogonality and sharp inclusion bounds for large Dirichlet eigenvalues," A. H. Barnett and A. Hassell, SIAM J. Numer. Anal. 49, 1046–1063 (2011)
- [18] "A new integral representation for quasi-periodic scattering problems in two dimensions," A. H. Barnett and L. Greengard, *BIT Numer. Math.* 51, 67–90 (2011)
- [17] "A few more words about James Tenney: dissonant counterpoint and statistical feedback," L. Polansky,
 A. H. Barnett, and M. Winter, J. Math. Music, 5 (2), 63–82 (2011)
- [16] "A new integral representation for quasi-periodic fields and its application to two-dimensional band structure calculations," A. H. Barnett and L. Greengard, J. Comput. Phys., 229 (19), 6898–6914 (2010)
- [15] "An exponentially convergent nonpolynomial finite element method for time-harmonic scattering from polygons," A. H. Barnett and T. Betcke, SIAM J. Sci. Comput. 32 (3), 1417–1441 (2010)
- [14] "Perturbative analysis of the Method of Particular Solutions for improved inclusion of high-lying Dirichlet eigenvalues," A. H. Barnett, SIAM J. Numer. Anal. 47, 1952–1970 (2009)
- [13] "Stability and convergence of the Method of Fundamental Solutions for Helmholtz problems on analytic domains," A. H. Barnett and T. Betcke, J. Comput. Phys. 227 (14), 7003–7026 (2008)
- [12] "Analytic steady-state space use patterns and rapid computations in mechanistic home range analysis,"
 A. H. Barnett and P. R. Moorcroft, J. Math. Biol. 57 (1), 139–159 (2008)
- [11] "Quantum mushroom billiards," A. H. Barnett and T. Betcke, CHAOS 17, 043125, 13 pages (2007)
- [10] "Mechanistic home range models and resource selection analysis: a reconciliation and unification," P. R. Moorcroft and A. H. Barnett, *Ecology* 89 (4), 1112–1119 (2008)
- [9] "Asymptotic rate of quantum ergodicity in chaotic Euclidean billiards," A. H. Barnett, Comm. Pure Appl. Math. 59, 1457–1488 (2006)
- [8] "Effective scattering coefficient of the cerebral spinal fluid in adult head models for Diffuse Optical Imaging", A. Custo, W. M. Wells III, A. H. Barnett, E. M. C. Hillman, and D. A. Boas, *Applied Optics* 45, 4747–55 (2006)
- [7] "A fast numerical method for time-resolved photon diffusion in general stratified turbid media," A. H. Barnett, J. Comput. Phys. 201, 771–797 (2004)
- [6] "Robust inference of baseline optical properties of the human head with 3D segmentation from magnetic resonance imaging," A. H. Barnett, J. P. Culver, A. G. Sorensen, A. M. Dale, and D. A. Boas, *Applied Optics* 42, 3095–3108 (2003)

- [5] "Parametric evolution for a deformed cavity," D. Cohen, A. H. Barnett, and E. J. Heller, *Phys. Rev. E* 63, 046207, 12 pages (2001)
- [4] "Mesoscopic scattering in the half-plane: squeezing conductance through a small hole," A. H. Barnett, M. Blaauboer, A. Mody, and E. J. Heller, *Phys. Rev. B* 63, 245312/1 (2001)
- [3] "Rate of energy absorption for a driven chaotic cavity," A. H. Barnett, D. Cohen, and E. J. Heller, J. Phys. A 34, 413–437 (2001)
- [2] "Deformations and dilations of chaotic billiards: dissipation rate, and quasi-orthogonality of the boundary wavefunctions," A. H. Barnett, D. Cohen, and E. J. Heller, *Phys. Rev. Lett.* **85**, 1412–15 (2000)
- "Substrate-based atom waveguide using guided two-color evanescent light fields," A. H. Barnett, S. P. Smith, M. Olshanii, K. S. Johnson, A. W. Adams, M. Prentiss, *Phys. Rev. A* 61, 023608, 11 pages (2000)

Conference proceedings, technical reports:

- [12] "Equispaced Fourier representations enable fast iterative Gaussian process regression," A. H. Barnett, P. Greengard, and M. Rachh, Yale technical report TR1562, 29 pages (2022)
- [11] "Robust periodization of frequency-domain integral equation solvers," A. H. Barnett, Report for Oberwolfach Workshop, 4 pages (2016)
- [10] "Unimodal clustering using isotonic regression: ISO-SPLIT," J. F. Magland and A. H. Barnett, 23 pages (2015). stat.ME/1508.04841v2
- [9] "New tools for the high-order solution of frequency-domain wave scattering problems at high frequencies and in periodic geometries," A. H. Barnett, *Report for Oberwolfach Workshop*, 4 pages (2013)
- [8] "Estimates on Neumann eigenfunctions at the boundary, and the 'Method of Particular Solutions' for computing them," A. Hassell and A. H. Barnett, *Spectral Geometry* (P. S. P. M. proceedings of the International Conference on Spectral Geometry, July 2010, Dartmouth College), 195–210 (2012)
- [7] "Robust high-order numerical scattering from multi-layer dielectric gratings using a new integral representation for quasi-periodic fields," A. H. Barnett and L. Greengard, *extended abstract*, WAVES2011 The 10th International Conference on Mathematical and Numerical Aspects of Wave Propagation (4 pages).
- [6] "Tensor product of kernel models," O. de la Cruz, A. H. Barnett, H. Tang, and S. Holmes, NIPS extended abstract, 4 pages (2010).
- [5] "Accurate and robust computation of photonic crystal band structure using second-kind integral equations," A. H. Barnett and L. Greengard, *extended abstract*, Proceedings of WAVES2009: The 9th International Conference on Mathematical and Numerical Aspects of Wave Propagation, 2 pages (2009).
- [4] "Quasi-orthogonality on the boundary for Euclidean Laplace eigenfunctions," A. H. Barnett, technical report, math-ph/0601006, 21 pages (2004).
- [3] "Bayesian estimation of optical properties of the human head via 3D structural MRI," A. H. Barnett,
 J. P. Culver, A. G. Sorensen, A. M. Dale, and D. A. Boas, *Proc. SPIE* 5138, 9 pages (2003)
- [2] "Fast computation of the time domain diffusion forward model for optical tomography in the Born approximation," J. J. Stott, Q. Zhang, and A. H. Barnett, 23 pages (2003).
- "Bayesian Comparison of Models for Images," A. H. Barnett and D. J. C. MacKay, in *Maximum Entropy and Bayesian Methods*, Proceedings of MAXENT94 (Kluwer, 1996), p. 239–248

Books:

Geometry of the Phase Retrieval Problem. A. H. Barnett, C. L. Epstein, L. F. Greengard, and J. F. Magland. (307 pages, Cambridge University Press, 2022).

Discriminating Data: Correlation, Neighborhoods, and the New Politics of Recognition, W. H. K. Chun, with mathematical illustrations by A. H. Barnett. (318 pages, MIT Press, 2021). I contributed 17 hand-drawn tutorial pages on topics in statistics, machine learning, and physics.

Spectral Geometry (P. S. P. M. proceedings of the International Conference on Spectral Geometry, July 2010, Dartmouth College). Editors: A. H. Barnett, C. S. Gordon, P. A. Perry, and A. Uribe. 339 pages (2012).

Software:

FINUFFT. Parallel non-uniform fast Fourier transform (2018-) http://finufft.readthedocs.io

cuFINUFFT. GPU-based nonuniform FFT (2020-) https://github.com/flatironinstitute/cufinufft

SpikeForest / MountainSort. Spike-sorting software and validation website project. Lead developer: J. Magland. (2016-). http://spikeforest.flatironinstitute.org

MPSpack. A MATLAB toolbox to solve Helmholtz and scattering BVPs with particular solutions and integral equations (tutorial 45 pages, manual 38 pages); downloaded at least 10³ times (2009-2016). https://github.com/ahbarnett/mpspack

Around twenty other software tools (of varying scope) at: https://github.com/ahbarnett https://www.simonsfoundation.org/flatiron/software/?type=40178

Outreach, cross-disciplinary work, education, press:

"Echoing Resynthesis," by W. H. K. Chun and A. H. Barnett; article on algorithms of Florian Hecker for exhibition catalog, Equitiable Vitrines gallery, Los Angeles, CA (2023).

Figures of nodal surfaces of 3D random plane waves appearing in: "Topology of the nodal set of random equivariant spherical harmonics on \mathbb{S}^3 ," J. Jung and S. Zelditch, *Intl. Math. Res. Notices*, 2021 (11), 8521–8549; and "Filament structure of random waves," M. Tacy, arxiv:2105.11086 (2021).

"Making a computational tool even faster," Simons Foundation 2019 Annual Report. https://annualreports.simonsfoundation.org/2019/making-a-fast-computational-tool-even-faster

"Snapshots of modern mathematics from Oberwolfach: Fast solvers for highly oscillatory problems," A. H. Barnett, 11 pages (2017). https://publications.mfo.de/handle/mfo/1370

"convolution: son et lumière," A. H. Barnett, issue 01 of Convolution. A journal for experimental criticism, 4 pages (2011). http://convolutionjournal.com/no-1

Computed eigenmodes for integrable and chaotic billiards, appearing in: S. Dyatlov, "Quantum ergodicity in theorems and pictures", Notices AMS (2023); S. Dyatlov, "Around quantum ergodicity", Ann. Math. Québec **46** 11–26 (2022); S. Dyatlov, "Macroscopic limits of chaotic eigenfunctions", Proc. ICM 2022; P. Sarnak, "Recent progress on the quantum unique ergodicity conjecture", Bull. AMS **48**(2) 211–228 (2011); D. Mackenzie, *What's Happening in the Mathematical Sciences, Volume 8* (AMS, 2011); S.-Y. Koyama, *From primes and zetas to arithmetic quantum chaos* (Nihon Hyoronsha, 2010); and S.-Y. Koyama, "Arithmetic quantum chaos and zeta functions", Suurikagaku, **571** (2011)

Cover of Notices of the American Mathematical Society, January 2008. I created all images (modes $1, 10, 10^2$, $10^3, 10^4, 10^5$ of a planar chaotic cavity), and eigenvalue data for article "Quantum Chaos" by Z. Rudnick.

Quantum chaos research featured in "A Decade of Science at Dartmouth", W. Schpero and C. Chiang, *Dartmouth Undergraduate Journal of Science*, Spring 2008.

INVITED RESEARCH TALKS

[SIAM CSE 23, ICOSAHOM 23, and ICIAM 23: declined, to minimize CO₂ and travel]

Imperial/UCL Numerical Seminar, London, UK	April 2023
Applied Mathematics Seminar, Yale	March 2023
Analysis-Applied Math-Physics Seminar, Dalhousie University (online)	January 2023

Numerical Analysis and Scientific Computing seminar, NYU	November 2022
Applied and Computational Mathematics Seminar, Dartmouth College	October 2022
Challenges in Computational Methods for Integral Equations, Casa Mátematica G	Daxaca, Mexico May 2022
NJIT Applied Mathematics Colloquium, Newark, NJ	November 2021
Panel discussant for book release of <i>Discriminating Data</i> (online)	November, December 2021
SIAM Annual Meeting (online)	July 2021
ICOSAHOM, Vienna (online)	July 2021
CCM Seminar, Flatiron Institute (online)	March 2021
Starshade Science and Industry Partnership (SIP) telecon, NASA/JPL (online)	March 2021
PACM Colloquium, Princeton	February 2020
Workshop on Machine Learning of Organic Force Fields, Flatiron Institute, NY	December 2019
UC Berkeley/LBL Applied Mathematics Seminar	November 2019
Widely Applied Mathematics seminar, SEAS, Harvard	October 2019
Mathematical Fluids, Materials and Biology, U. Michigan	June 2019
High-Order Discretizations and Quadrature for Integral Eqn. Methods, SIAM CS	E, Spokane, WA Feb 2019
Frontiers in Computational and Applied Mathematics, NJIT, Newark, NJ	August 2018
ICOSAHOM (two invited minisymposium talks), Imperial College, London, UK	July 2018
Flatiron Friday Seminar, Simons Foundation, NY	June 2018
Applied Mathematics Seminar, Yale	April 2018
Aerospace & Mechanical Engineering Seminar, USC	April 2018
Fast Algs. for Generating Static and Dynamically Changing Point Configs., ICEI	RM, Brown March 2018
Scientific Computing and Numerical Analysis (SCAN) seminar, Cornell	February 2018
Flatiron Institute Board Meeting, Simons Foundation	January 2018
Workshop on Random geometries / Random topologies, ETH Zurich	December 2017
Scientific Computing Colloquium, FSU, Tallahassee	November 2017
Flatiron Institute Lunch & Learn Seminar, NYC	November 2017
SIAM Conference on Computational Science and Engineering, Atlanta	March 2017
IMA workshop, Mathematical and Numerical Modeling in Optics, U. Minnesota	December 2016
Math/ICES numerical analysis seminar, UT Austin	December 2016
Oberwolfach Workshop on Fast Solvers for Highly Oscillatory Problems. MFO, G	Germany November 2016
SIAM Annual meeting, Boston	July 2016
SIAM Conference on Computational Science and Engineering, Salt Lake City	March 2015
PACM Colloquium, Princeton	February 2015
SCDA Journal Club, Simons Foundation	November 2014
CBMS-NSF Conference on Fast Direct Solvers for Elliptic PDE, Dartmouth Coll	lege June 2014
Numerical Analysis and Scientific Computing Seminar, Courant Institute, NYU	March 2014
Integral Equations Methods: Fast Algorithms and Applications, BIRS, Banff	December 2013
Numerical analysis and PDE seminar, U. of Delaware	November 2013
Colloquium, U. of Arizona, Tuscon, AZ	November 2013

Colloquium, Mathematics Dept, Tufts University	September 2013
Physics Colloquium, UMass Boston	April 2013
Middlebury College, VT	April 2013
Applied Mathematics Seminar, NJIT, Newark, NJ	March 2013
SIAM Conference on Computational Science and Engineering, Boston	February 2013
Numerical Analysis and Scientific Computing Seminar, Courant Institute, NYU	February 2013
Widely Applied Math Seminar, DEAS, Harvard	January 2013
Oberwolfach Workshop on Computational Electromagnetism and Acoustics. MFO, Germa	ny January 2013
Applied Math Colloquium, U. Michigan	November 2012
Integrated Applied Mathematics Seminar, UNH.	November 2012
Applications of Integral Equation Methods, minisymposium, SIAM Annual Meeting, Minne	eapolis July 2012
Workshop on Geometry of eigenvalues and eigenfunctions, CRM, Univ. de Montréal	June 2012
Challenges in Geometry, Analysis, and Computation, Yale University (poster)	June 2012
Frontiers in Computational and Applied Mathematics, NJIT, Newark, NJ	May 2012
Analysis/PDE Seminar, UNC Chapel Hill	April 2012
Mathematical Physics and Harmonic Analysis Seminar, Texas A&M University	February 2012
Modern Numerical Methods for Waves: Periodic Geometries, ICIAM, Vancouver	July 2011
WAVES2011, Vancouver (contributed talk)	July 2011
Applied and Computational Mathematics Seminar, Dartmouth May 2011; January 201	2; February 2012
New England Numerical Analysis Day, UMass Dartmouth	April 2011
CSC Seminar, Simon Fraser University, Vancouver, BC	March 2011
Numerical Analysis and Scientific Computing Seminar, Courant Institute, NYU	January 2011
Applied Mathematics and Computational Science Colloquium, U. Penn	January 2011
Conference in honor of 65th birthday of Eric Heller, ITAMP, Harvard	October 2010
Integral Equation Methods, Fast Algorithms and Applications, IMA workshop, Minnesota	August 2010
Frontiers in Computational and Applied Mathematics, NJIT, Newark, NJ	May 2010
Numerical solution of the Painlevé equations, ICMS, Edinburgh, UK	May 2010
Applied Analysis Seminar, Louisiana State University	March 2009
Dartmouth Mathematics Colloquium	November 2009
MIT Applied Mathematics Colloquium	November 2009
Computational Optical Sensing and Imaging Seminar, CU Boulder	September 2009
Topological Complexity of Random Sets, AIM workshop, Palo Alto	August 2009
WAVES2009, Pau, France (contributed talk)	June 2009
Colloquium & PDE/Analysis Seminar (two separate talks), ANU, Canberra, Australia	February 2009
Laplacian Eigenvalues & Eigenfunctions: Theory, Computation, Application, IPAM, UCL	A February 2009
Workshop on Numerical and Analytical Methods for Wave Scattering, Manchester, UK	June 2008
Workshop on quantum chaos, CRM (Univ. de Montréal)	June 2008
Frontiers in Computational and Applied Mathematics, NJIT, Newark, NJ (contributed po	ster) May 2008
McGill Applied Mathematics Seminar, Montreal	March 2008

Applied Mathematics Seminar, U. Delaware	November 2007
Numerical analysis seminar, Manchester, UK	July 2007
Three separate mini-symposium talks, ICIAM, Zurich	July 2007
PDE/Analysis Seminar, ANU, Canberra, Australia	February 2007
Heller Group Seminar, Physics Department, Harvard	December 2006
Applied Mathematics Seminar, UMass Amherst, MA	November 2006
Dartmouth Physics Colloquium	October 2006
SIAM Annual Meeting, Boston (contributed talk)	July 2006
Joint MIT/Harvard Analysis Seminar	March 2006
Computations in Science Seminar, U. Chicago	November 2005
Institute of Sound and Vibration Research, Southamption University, UK	June 2005
Computational Mathematics and Applications Seminar, Computing Laboratory, Oxford	d, UK June 2005
Numerical Analysis and Scientific Computing Seminar, Courant Institute, NYU	December 2004
Applied Mathematics Colloquium, Columbia University	October 2004
Workshop on Semi-classical Theory of Eigenfunctions and PDEs, CRM (Univ. de Mon-	tréal) June 2004
Applied Mathematics Seminar, Yale University	March 2004
Applied Mathematics Laboratory Seminar, Courant Institute, NYU	February 2004
European Conference on Biomedical Optics, Munich, Germany (contributed talk)	June 2003
Theoretical & Computational Biology Seminar Series, Mount Sinai School of Medicine,	NY May 2003
Applied Mathematics Seminar, Courant Institute, NYU	November 2002
Photon Migration Imaging Seminar, Harvard Medical School	May 2002
Applied Mathematics Laboratory Seminar, Courant Institute, NYU	December 2001
Statistics Seminar, University of Toronto	September 2001
Pan-American Advanced Study Institute on Quantum Chaos, Ushuaia, Argentina	October 2000
14th Maximum Entropy Workshop (MAXENT94), Cambridge, UK	June 1994

TEACHING

Flatiron Institute

• Nonuniform FFTs at Flatiron: lessons from developing a small	numerical library, in Flatiron-Wide
Autumn Meeting	October 2023
• The GMRES method to solve square linear systems and its conver	rgence rate, in <i>Scientific Computing</i>
and Concepts Seminar	October 2021
• The joys and pitfalls of numerical computing, in <i>Flatiron-Wide</i>	e Algorithms and Mathematics III,
$F_{\omega}(lpha{+}m)^3$	October 2021
• Writing good functions (2-hour workshop, co-presenter), SciWare	November 2020
• Function approximation and differential equations, in <i>Flatiron</i> -	Wide Algorithms and Mathematics,
$F_{\omega}(lpha+m)!$	October 2019
rtmouth College (the six new courses I created are shown by as	terisks)
• Math 5: The Mathematics of Music and Sound (non-majors)*	Spring 2007, Fall 2008, 2010, 2011

•	Math 5: The Mathematics of Music and Sound (non-majors)	* Spring 2007, Fall 2008, 2010, 2011
٠	Math 11: Multivariable Calculus	Fall 2010, 2015
•	Math 22: Linear Algebra with Applications	Summer 2006, Fall 2016, Summer 2017
•	Math 23: Differential Equations	Fall 2005, 2007
•	Math 46: Introduction to Applied Mathematics $(majors)^*$	Spring 2007, 2008, 2009, 2011

• Math 50: Probability and Statistical Inference	Winter 2006
• Math 53: Chaos! (dynamical systems, for majors)*	Fall 2007, 2009, 2011, 2015
• Math 56: Computational and Experimental Mathematics (majors) [*]	* Spring 2013, 2014
• Math 116/126: Numerical PDEs & Waves [*] (graduate) Wi	inter 2006, Fall 2008, Winter 2012
• Math 116: Great Papers in Numerical Computation [*] (graduate)	Spring 2014
• Math 147: Graduate Teaching Seminar (with M. Groszek or R. Ore	ellana)
	Summer 2012, 2013, 2014, 2017
New York University	
• Business Calculus	Fall 2004
Mothers time War Demension (here we WARD second with O Bill	(1 - 1) $(1 - 1)$

Spring 2004
Fall 2003
Spring 2003
Fall 2002

Harvard University

• TA / head TA, 8 semesters in physics; *Microteaching Facilitator* for Derek Bok Center 1995–2001

MENTORING

Postdoctoral advisees:

Fruzsina Agocs (Flatiron Research Fellow, CCM, Flatiron Institute)	October 2021–present
Daniel Fortunato (Flatiron Research Fellow, CCM, Flatiron Institute) now: Associate Research Scientist, CCB/CCM, Flatiron Institute	September 2020–2023
Jason Kaye (Flatiron Research Fellow, CCM, Flatiron Institute) now: Associate Research Scientist, CCQ/CCM, Flatiron Institute	September 2019–2022
James Jun (Associate Research Scientist, CCM, Flatiron Institute) now: Research Scientist, Meta Reality Labs	September 2018–May 2020
Jun Wang (Flatiron Research Fellow, CCB, Flatiron Institute) now: Tenure track, Tsinghua University	October 2017–August 2020
Min Hyung Cho (IACM Instructor, Mathematics, Dartmouth College) now: Associate Professor, Mathematics & Statistics, UMASS Lowell	July 2012–June 2015
Adrianna Gillman (JWY Instructor, Mathematics, Dartmouth College) now: Associate Professor, Applied Mathematics, CU Boulder	July 2011–June 2014
Graduate students:	
Yuxiang Larry Liu (Ph.D. '16; Physics. Now: Quantitative researcher, Citadel) The numerical solution of frequency-domain acoustic and electromagnetic period	January 2013–June 2016 lic scattering problems
Lin Zhao (Ph.D. '15. Now: Software engineer, Lacework, NYC) Boundary integral equations and their applications	May 2012–June 2015
Matt Mahoney (Ph.D. '09; advised for one year) Global numerical methods for eigenmodes with gravity	July 2006–July 2007
Summer interns:	
Srinath Kailasa (CCM; co-mentored with M. Rachh)	June–August 2022
Tanya Wang (CCM; co-mentored with M. Rachh)	July–August 2021
Michael Doppelt (CCM)	June–August 2020
Andrea Malleo (CCM)	June–August 2019
Daniel Fortunato (CCM)	June–August 2019

Yu-Hsuan Melody Shih (Numerical Algorithms Group, CCB)	June–August 2018, July 2019
Hannah Lawrence (Numerical Algorithms Group, CCB)	June–August 2017
Undergraduate students:	
Paula Chen '17 (senior thesis) Neural spike sorting algorithms for overlapping spikes	Fall 2016–Spring 2017
Luis Martinez '16 (Physics; senior thesis) Bubbles in my scalar field soup: a study on oscillons in cosmology	Spring 2016
Matthew Jin '17 (supported by \$4k from my NSF grant) Topological statistics of nodal surfaces of random waves	June 2014–2016
John Conley '15 (Presidential Scholar) Modeling optical waveguides and solar cells	September 2013–May 2014
James Brofos '15 (supported by \$4k from my NSF grant) Behavior and solution of layer densities for close-to-touching curves	June–August 2013
Ben Southworth '13 (supported by start-up; co-advisor Brenden Epps) Stability of the SVD for measurement of eigenfunctions of a linear system	June–July 2013
Bradley Nelson '13 (supported by \$4k Richter Memorial Fund; senior thesis) Integral equations for waves in variable-index media	March 2012–May 2013
Hahn Nguyen '14 (first-year WISP intern, Women in Science Program) Accurate evaluation of layer potentials up to the boundary	January–June 2011
Kyle Konrad '12 (senior thesis, Neukom Scholar) Nodal domain counts of chaotic eigenfunctions	March 2011–June 2012
Vipul Kakkad '13 (Presidential Scholar) Optimization of tubular bell mode frequencies	January–March 2012
Taylor Sipple '13 (Presidential Scholar) Method of particular solutions for polygon and Dirichlet-Neumann eigenmode	June–December 2011
Kathleen Champion '11 (Presidential Scholar and senior thesis; co-supervisor Three-dimensional tracking of nuclear mitosis	· Amy Gladfelter, Biology) January 2010–May 2011
Zoe Lawrence '10 (senior thesis, with 'high honors'; co-supervisor Dorothy W The spatiotemporal dynamics of African Cassava Mosaic Disease	Vallace) Spring 2010
Emmanuel Mensah '09 (independent study) The inverse source problem in medical imaging (published in DUJS, Novemb	Spring 2009 er 2009)
Yong Su '09 (senior thesis, with 'high honors'; Neukom Scholar) Computing the capacitance of the unit cube	September 2008–March 2009
Evan Tice '09 (computer science major; co-supervisor Amy Gladfelter, Biolog Automated image tracking of cell movement and division (awarded Kemeny I	gy) January 2008–June 2009 Prize, 2008)
Chetan Mehta '08 (senior thesis, with 'high honors') Optimal optode location in Diffuse Optical Tomography	June 2007–May 2008
Chor Lam '08 (Presidential Scholar) Chaos in billiards	January–June 2008
Vissuta Jiwariyavej '09 (sophomore WISP intern, Women in Science Program A clap can chirp: waves and echoes in the racquetball court	n) January–June 2007
William A. Webb (summer research student, Caltech; co-advisor Mason Port A computational study of the quantization of billiards with mixed dynamics	er) Summer 2006

External thesis committees:

Fredryk Fryklund (KTH, Ph.D 2021); as opponent I also gave a 30 min background talk. Integral equations and function extension techniques for numerical solution of PDEs

Jason Kaye (NYU, Ph.D 2019) Integral equation-based numerical methods for the time-dependent Schrödinger equation

Leonardo Andrés Zepeda-Núñez (MIT, Ph.D 2015) Fast solvers for the Helmholtz equation

SERVICE AND OUTREACH

Seminar organizing:

Scientific Computing Seminar / Discussion Group, Flatiron Institute (31 meetings so far)2020-CCM Colloquium (formerly Numerical Analysis Seminar), Flatiron Institute (≥ 50 invited talks)2017-2021Applied and Computational Mathematics Seminar, Dartmouth College (≥ 90 invited talks)2006-2016Organizer (with J. Zhang), Applied Mathematics Laboratory Seminar, Courant Institute, NYU2002-2003Organizer, Creating Careers in Physics series, Harvard1999-2000

Outreach and educational:

The Simons Sessions I: jazz and mathematics (with Stephon Alexander), Flatiron Institute October 2020 Research talk for Simons Foundation New Hire Workshop November 2019 Research talk for Simons Foundation Staff Meeting February 2019 Research talk for Flatiron Institute Board Meeting January 2018 Guest lecture, Mathematics and Music, Hanover High School, NH May 2016 Two-hour workshops on Math and Music for high-school teachers, Math for America January, March 2016 Co-supervisor, *Exploring Mathematics*, 2-week "camps" ages 11-17, Dartmouth Summer 2012–2014, 2017 Periods, Pitches and Pipes: middle-school music/math module (with Megan Martinez) June 2013 The Mathematical Overtones of Music, lecture, JHU Center for Talented Youth, Odyssey Series May 2011 October 2007 Interactive Learning in the Sciences, session given for DCAL (teaching center) 2007-2011 Cross-disciplinary classroom visits by professional musicians to Math 5, 53 Guest lectures (1 week graduate level), Math 117, Dartmouth College Summer 2012, 2013 Affiliated faculty, Electro-Acoustic Music Program, Dartmouth 2007 - 20172006, 2008, 2009, 2010, 2011 Research talks for Dartmouth Mathematics Society Judge, DMAX Makeathon May 2014 Research talk at Thugz Institute of Science, Dartmouth April 2014 Mathematical model building, Dartmouth Mathematics Society October 2006 Guest lecture, Music 3 (Music and Technology), Dartmouth November 2006 **Flatiron Institute committees:** Organizing committee, Flatiron-Wide Autumn Meeting on software best practices 2023 SciWare Steering Committee January 2021–April 2023 University committees & duties (Dartmouth College): Chair, Committee on Organization and Policy (elected position) Fall 2015 Committee on Organization and Policy (elected position) 2013 - 2016Committee on Student Life 2011-2013 Advisory Committee, Leslie Center for the Humanities Winter 2011–Spring 2013 Faculty Advisory Board, Dartmouth Undergraduate Journal of Science (DUJS) Fall 2007-2017 First-year advising Fall 2007, 2008, 2010, 2011 Department committees & duties (Dartmouth College): Teaching Assistant Discussion Group Fall 2017 Faculty Advisor, Dartmouth SIAM Student Chapter March 2012–Nov 2015 2011 - 2013Advisor to Graduate Students Committee member, Applied Mathematics Qualifying Examination, Lin Zhao Spring 2012 Committee member, Applied Mathematics Qualifying Examination, Katherine Kinnaird Spring 2010 Graduate Program Committee 2006-2007, 2012-2014, 2015-2017 Graduate Admissions Committee 2005, 2006, 2011

Undergraduate Program Committee	2005, 2008-2010
Recruiting Committee	2007-2008, 2010-2011, 2012-2013
Computing Committee	2005-2006, 2015-2016
Equipment Committee	2007-2008
Mirkil Book Committee	2006-2007
Research talks for Dartmouth Graduate Recruiting Open House	2006, 2007, 2009, 2011, 2013

OTHER PROFESSIONAL ACTIVITIES

Conference organizing:

Organizing committee, Computational Tools for PDEs with Complicated Boundaries and Interfaces, Flatiron Inst. June 2024 Organizing committee, Flatiron-Wide Autumn Meeting, Flatiron Inst. October 2023 Organizer (with 3 others), Computational Methods for Multiple Scattering workshop, Isaac Newton Inst., Cambridge, UK April 2023 Chair of committee, Flatiron-Wide Algorithms and Mathematics, $F_{\omega}(\alpha+m)!$, Flatiron Inst. October 2019 Organizing committee, Frontiers in Applied and Computational Mathematics, NJIT August 2018 Organizer (with 3 others), Modern Advances in Computational and Applied Mathematics, Yale June 2017 Organizer (with L. Zepeda-Núñez), two minisymposia on the high-frequency Helmholtz equation, SIAM Annual Meeting, Boston July 2016 Organizer (with 3 others), CBMS-NSF Conference on Fast Direct Solvers for Elliptic PDE, Dartmouth College June 2014 Organizer (with 4 others), Integral Equations Methods: Fast Algorithms and Applications, BIRS December 2013 Organizer (with L. Demanet), minisymposium on the high-frequency Helmholtz equation, SIAM CSE, Boston February 2013 Organizer (with L. Demanet), two minisymposia on numerical waves, ICIAM, Vancouver, BC July 2011 Organizer (with 3 others), International Conference on Spectral Geometry, Dartmouth College July 2010 Organizer (with 3 others), Boston Area Undergraduate Physics Competition 1998 - 2001Journals: Editorial committee for AMS Mathematical Surveys and Monographs 2023-2027 Co-Editor in Chief, Advances in Computational Mathematics (ACOM) 2017-present Guest editorial board, Special Issue on Advances in Computational Integral Equations, ACOM 2021Editorial board, Advances in Computational Mathematics 2012 - 2017

Referee service:

SIAM Journal on Scientific Computing, SIAM Journal on Applied Mathematics, SIAM Journal on Numerical Analysis, Journal of Computational Physics, Advances in Computational Mathematics, Notices of the AMS, Journal of the AMS, Communications in Mathematical Physics, Mathematics of Computation, Journal of Mathematical Analysis and Applications, Journal of Differential Equations, Inverse Problems, Proceedings of the Royal Society of London A, Journal of Physics A, Journal of Scientific Computing, Engineering Analysis with Boundary Elements, Numerical Functional Analysis and Optimization, Experimental Mathematics, Constructive Approximation, Applied Optics, Waves in Random and Complex Media, Wave Motion, NeuroImage, Journal of Electronic Imaging, Physics in Medicine and Biology, Transactions on Medical Imaging, Journal of the Optical Society of America A, Nonlinear Dynamics, Canadian Journal of Physics, New Journal of Physics, AMS Mathematical Reviews, Johns Hopkins Press, SIAM book series, NSERC (Canada), Israel Science Foundation.

Review panels:

National Science Foundation

Scientific Committee, International Conference on Mathematical and	l Numerical Aspects of Wave Propaga-
tion (WAVES) 20	011, 2013, 2015, 2017, 2019, 2022, 2024
Scientific Committee, International Association for Boundary Eleme	nt Methods (IABEM) 2018
Scientific Committee, SIAM-NNP (New York-NJ-Penn regional SIA	M group), Annual Meeting 2023

Member:

Society for Industrial and Applied Mathematics